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Abstract: Sociophonetic study of large speech corpora generally requires the use of forced alignment —
the automatic process of determining the start and end time of each speech sound within the recording
— in order to facilitate large-scale automated extraction of acoustic measurements of targeted vowels
or consonants. There is an extensive literature evaluating alignment accuracy of a number of forced
alignment tools and procedures, processing speech data from a range of languages and dialects. In
general, these evaluations use typical adult speech data, o�en elicited in a controlled laboratory envi-
ronment. There is little literature on the e�ectiveness of forced alignment systems on child speech, and
none on speech elicited in �eld environments. This presents a problem for research at the intersection
of language acquisition and sociophonetics as there is no established best practice for automatically
aligning child speech. Child speech presents special challenges to automated tools, as it includes more
variation in speech sounds and voice quality, and non-standard pronunciation and prosody. We eval-
uated three commonly used forced aligners, the Montreal Forced Aligner (MFA), the Hidden Markov
Model Toolkit (HTK) integration provided by the LaBB-CAT corpus analysis tool, and the Penn Aligner
(P2FA), using di�erent con�gurations to force align non-rhotic child speech elicited in a preschool en-
vironment. Against many of our expectations, we found that volume of training data trumps similarity
to the speech; MFA, using rhotic acoustic models pre-trained on adult speech, performed best. This
paper provides a clear methodology for other researchers in sociophonetics to evaluate the success or
otherwise of phonetic alignment.
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Introduction

There has been a progressive development in the collection and use of large digitised
speech corpora containing hundreds of hours of spontaneous speech in sociophonetic
research, e.g. the Origins of New Zealand English (ONZE) corpus containing over 3mil-
lion words (Gordon et al. (2007)), or the Spoken BNC2014 corpus over 11 million words
(Love et al. (2017)). Such corpora are not amenable to painstakingmanual alignment to
thephone level, which can take 800 times longer than theduration of the speech (Schiel
et al. (2012), Section 8.5.1, p. 111, footnote 11). ‘Forced alignment’, the automated pro-
cess of locating the start and end times of speech soundswithin speech recordings, has
been described as ‘transformative’ by Coto-Solano (2022) (p. 2) allowing the large-scale
extraction and study of segments from such corpora.

Although automatically generated alignments of extracted speech sound tokens can
be manually checked and adjusted for accuracy, as the number of tokens extracted
increases, the practicality of manually checking each and every one decreases. Devel-
oping highly accurate tools and procedures for forced alignment is critical, and there
is a decades-long literature evaluating di�erent systems and techniques when applied
to adult speech. Current best practice in sociophonetics research on adult talkers com-
bines methods which use the most accurate forced alignment con�guration, together
with procedures for automatically weeding out erroneous tokens a�er extraction. This
method can result in the loss of incredible amounts of data (e.g. Brand et al. (2021)
report losing 80% of their data during the �ltering process) and yet it still allows mea-
surement and analysis of hundreds of thousands of tokens.1 Maximising the accuracy
of automatic alignment is crucial to minimising such exclusion of data.

Although the literature is well established for typical adult speech, very little work has
been done to establish best practices for accurate alignment of child speech. During
language development, speech includes more variation in pronunciation (Lee et al.
(1999), Assmann & Katz (2000)), duration (Smith (1992), Lee et al. (1999)), and prosody
(Athanasopoulou & Vogel (2016)), which can be a challenge for automatic tools that are
calibrated for typical adult speech.

A�er reviewing the current literature on forced alignment of adult and child speech,
we describe our own child spontaneous speech corpus, present experiments we ran
to determine the most accurate procedure for force aligning our data with three com-
monly used forced aligners, and the methods we used to measure accuracy. Finally,
we present the results of these experiments, and discuss the implications of those re-
sults.

1In addition to Brand et al. (2021), see recent work by Stuart-Smith et al. (2019). A comprehensive
survey of forced alignment used for sociophonetic research is provided by Coto-Solano (2022) (Section
6).
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Forced Alignment Tools and Procedures

Since the 1990’s a number of computational techniques have been applied to the prob-
lem of forced alignment, including Dynamic Time Warping (DTW; Cosi et al. (1991),
Coleman (2005)), Hidden Markov Models (HMMs; Young et al. (2006)), and Deep Neu-
ral Networks (DNNs; Hawkins et al. (2017)). Forced alignment procedures have some-
times included post-alignment error correction by modelling errors based on a small
number of manual alignments (Toledano & Gómez (2002), Adell et al. (2005)).

Most current forced aligners commonly used for phonetics research use one of two
HMM-based Automatic Speech Recognition (ASR) so�ware toolkits: the HMMTool Kit
(HTK; Young et al. (2006)) and Kaldi (Povey et al. (2011)).

Although the ASR toolkits themselves support a wide array of options for preparing,
processing, and aligning speech data, the forced aligners that have been developed to
simplify andautomateparts of this process for phonetics generally employ a two-phase
process.

Phase one requires three ingredients:

1. a collection of speech recordings,
2. corresponding orthographic transcripts with start and end times of utterances,

and
3. amapping of orthographic spelling to pronunciation using some set of phoneme
symbols (usually a pronunciation dictionary).

Hidden Markov Model Gaussian Mixture Models (HMM-GMMs) are trained using the
toolkit, which uses Mel Frequency Cepstral Coe�cients (MFCC) computed from the
audio signal2, producing a set of acoustic models, either one for each phoneme sym-
bol (monophone models) or one for each distinct cluster of three phonemes (triphone
models).

Phase two requires four ingredients:

1. a collection of recordings,
2. corresponding orthographic transcripts,
3. a mapping of orthographic spelling to pronunciation using the same set of
phoneme symbols used during phase one, and

4. the acoustic models trained during phase one.

Phase two involves using acoustic models from phase one, either as-is or adapted for
each speaker, to align the word pronunciations with the audio, output being a set of

2Gaussian Mixture Models (GMMs), are used to model the distribution of the coe�cients
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start and end times for the words and corresponding phones found in the record-
ings.

Aligners that use ‘pre-trained models’ are those where the recordings and transcripts
used in phase one are di�erent from those used in phase two. Conversely aligners that
use a ‘train/align’ procedure are those where the same recordings/transcripts are used
in both phases.

If the recordings in phase one are all from the same speaker, then the models are
speaker-speci�c, otherwise they are speaker-independent, although some aligners sup-
port adapting speaker-independent models to individual speakers during phase two.
We refer to the former as speaker-adaptedmodels and the latter as unadapted.

HTK and Kaldi

HTK and Kaldi are both toolkits for developing ASR systems. They both use HMMs (al-
though Kaldi supports using DNNs instead) and can both be used for training mono-
phone or triphone models.

HTK, developed from 1989 to 2016 by Cambridge University Engineering Department
(CUED), is older than Kaldi. Kaldi has been in development since 2009 at Johns Hop-
kins University, using more ‘modern and �exible code’ than HTK3. While the source
code for both toolkits is available, the HTK license requires users to register. Kaldi is
released with the Apache License v2.0 licence, and is fully open source.

Current Forced Alignment Systems

Forced alignment systems currently used in sociophonetic research eachuse their own
combination of toolkits, models, and procedures. Widely used systems include:

• Penn Phonetics Lab Forced Aligner (P2FA; Yuan & Liberman (2008)), which uses
monophone HTK models pre-trained on American English speech;

• Munich AUtomatic Segmentation (MAUS; Schiel (1999), Schiel (2015)), an HTK-
based system with pre-trained models for a wide variety of languages, also avail-
able via BAS Web Services4(Kisler et al. (2017));

• Prosodylab Aligner (Gorman et al. (2011)), an HTK-based system that allows for
training of new acoustic models;

• Montreal Forced Aligner (MFA; McAuli�e et al. (2017)), the successor of Prosody-
Lab Aligner5, built on Kaldi’s HMM capabilities, including speaker-adaptedmod-
els, and supporting both pre-trained triphone models (acoustic models and pro-

3https://www.kaldi-asr.org/doc/about.html
4https://www.bas.uni-muenchen.de/Bas/BasMAUS.html
5McAuli�e et al. (2017) p. 1.
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nunciation dictionaries for a wide range of languages and varieties are available)
and also a train/align mode of operation;

• LaBB-CAT (Fromont & Hay (2012)), a speech corpus management system that
integrates with HTK, P2FA, MFA and BAS Web Services, supporting both pre-
trained and train/align procedures; and

• Gentle (Hawkins et al. (2017)), which like MFA is built on Kaldi, but unlike MFA,
uses DNNs instead of HMMs6, and supports English only.

Evaluations on Adult Speech

Over the last three decades, the accuracy of many forced alignment tools and con�gu-
rations has been evaluated using adult speech.

Factors considered in these evaluations include: which tool set is used (Chen et al.
(2004), Adell et al. (2005), Niekerk & Barnard (2009), DiCanio et al. (2013), McAuli�e
et al. (2017), Meer (2020)), the amount of data used for training (Toledano & Gómez
(2002), Chen et al. (2004), Brognaux et al. (2012), Fromont & Watson (2016)), speech
style (e.g. read vs. spontaneous) (Chen et al. (2004), Fromont &Watson (2016)), whether
monophone or triphone models are used (Toledano & Gómez (2002), Brognaux et al.
(2012), McAuli�e et al. (2017)), using pre-trained models or the train/align procedure
(Niekerk & Barnard (2009), Brognaux et al. (2012), Fromont &Watson (2016), McAuli�e
et al. (2017), Gonzalez, Grama, et al. (2018)), using speaker-independent or speaker-
speci�c models (Toledano & Gómez (2002), Niekerk & Barnard (2009), Brognaux et al.
(2012)), how�nely chunked the speech is (Chen et al. (2004)), applying automated post-
alignment corrections based on a manual aligned sample (Toledano & Gómez (2002),
Adell et al. (2005)), or by force-aligning data recursively, adding more data for each
new cycle (Moreno et al. (1998), Gonzalez, Grama, et al. (2018)). The literature in-
cludes data from di�erent languages (e.g. Afrikaans, English, French, isiZulu, Matukar
Panau, Russian, Setswana, Spanish) and language varieties (e.g. American, Australian,
Blackburn, Hastings, Liverpool, Manchester, New Zealand, Sunderland, and Westray
English), including caseswheremodelswere pre-trained on a di�erent language (Niek-
erk&Barnard (2009), DiCanio et al. (2013), Babinski et al. (2019), Tang&Bennett (2019))
or variety (Fromont &Watson (2016), MacKenzie & Turton (2020)) from the speech be-
ing aligned.

Various metrics have been used for comparing manual alignments with automatic
ones, including comparing aggregate acousticmeasurements (pitchpeak, vowel space,
and mean duration) resulting from automatic and manual alignments (Babinski et
al. (2019)), error thresholds for absolute di�erences in boundaries (Cosi et al. (1991),
Toledano & Gómez (2002), DiCanio et al. (2013), McAuli�e et al. (2017), Tang & Bennett
(2019), Meer (2020), Gonzalez, Grama, et al. (2018), Gnevsheva et al. (2020)) or interval

6Early versions of MFA included the possibility of using DNNs, but MFA version 2.0 does not
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mid-points (Gonzalez, Travis, et al. (2018)), mean /median di�erences between bound-
aries (Chen et al. (2004), Gorman et al. (2011), McAuli�e et al. (2017), Gonzalez, Grama,
et al. (2018), Tang & Bennett (2019), Meer (2020), Gonzalez et al. (2020)), and the ‘Over-
lap Rate’ — the proportional degree of overlap of intervals (Niekerk & Barnard (2009),
Fromont &Watson (2016), Gonzalez, Travis, et al. (2018), Gonzalez et al. (2020)).

General conclusions from the literature are that the �ner the data is chunked the better
and that speaker-speci�cmodels aremore accurate than speaker-independentmodels,
as are models trained on more data. A mismatch in speech style between the train-
ing and alignment data leads to lower accuracy, and using a sample of manual align-
ments to model post-alignment corrections also boosts accuracy. There is con�icting
evidence about whether monophone or triphone models are more accurate. HMM-
based systems represent the current state of the art, with a recent preference towards
Kaldi-based MFA rather than older HTK-based ones (Gonzalez, Grama, et al. (2018),
Gonzalez et al. (2020)).

Evaluations on Child Speech

Work on forced alignment has skewed towards ‘high resource’ data, i.e. ‘mainstream’
languages such as English, and high-status varieties of those languages, such as US
English. This skew also has a demographic dimension. Development and evaluation
of forced alignment tends to use readily available non-pathological adult speech.

However other types of speech also warrant sociophonetic research; child speech has
special challenges not usually present in most adult speech. As children are still in
the process of developing their language faculties, they showmore variability in their
phonology, volume, and articulation. The authors have also found unusual prosodic
phenomena such as mid-word pauses in our own data (Fromont et al. (2022)).

Alignment accuracy with child speech has only recently received any attention from
researchers. Knowles et al. (2018), Mahr et al. (2021), and Szalay et al. (2022) have
performed someevaluationswhichwenowdescribe. Knowles et al. (2018) investigated
the e�ect of various factors on the accuracy of forced alignment of child speech, using
a speci�c forced alignment tool, ProsodyLab-Aligner. They used two corpora of child
speech: one comprising 2 hours of spontaneous speech by a single Canadian English
speaking child at di�erent ages (1;5 - 3;6), and another including 5 hours of single-word
controlled speech by 40 girls and 41 boys aged between two and six years, speaking US
English recorded in a laboratory.

Using the attributes of the corpora themselves, they examined the e�ects of speech
style and speaker age. They also compared alignments produced using di�erent types
of training data: adult speech only, adult and child speech, and child speech only, train-
ing both speaker-independent models and speaker-speci�c models. In addition they
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compared the use of two di�erent dictionaries: a ‘standard’ dictionary (the CMU Pro-
nouncing Dictionary, Rudnicky&Weide (2014)), and a dictionarymanually customised
to match the child’s speech.

They concluded that controlled speech had more accurate alignment than sponta-
neous speech,7 the speech of older children was more accurately aligned, child-only
models performed better, and the customised dictionary, whichmore closelymatched
the child’s actual speech, performed better than a ‘standard’ dictionary. Vowels and
sibilants were best aligned. The best accuracies produced, using their midpoint
overlap metric (see below), were 75%-90%.

Mahr et al. (2021) compared di�erent forced aligners - MFA, Kaldi with triphone mod-
els, Prosodylab Aligner, and P2FA - using a corpus of 42 US English speaking children
aged between 3 and 6 years, recorded in a laboratory. Unlike Knowles et al. (2018),
the utterances were generally sentences (up to 60 per participant) rather than single
words8, butwere still highly controlled. They found thatMFAusingmodels pre-trained
on adult speech produced the best alignments, with 86% accuracy (using midpoint
overlap). Again, vowels were the best aligned segments.

Szalay et al. (2022) have also evaluated forced aligners on child speech, comparing
the MAUS HTK-based aligner with three custom aligners trained using Kaldi’s DNN
functionality, rather than using HMMs. Their test data were 153 single words elicited
from 11 Australian English (AusE) speaking children (7 boys and 4 girls) aged between
4;10 and 11;11. Their custom aligners di�ered by training data; onewas trained onAusE
speaking adults, another was trained on speech by similar aged children speaking a
di�erent dialect – American English (AmE) – and the third was trained on amixture of
adult AusE and child AmE speech.

They found that the custom aligners trained on adult AusE training data, and the
aligner that combined this with AmE child data, had similar high comparative accu-
racy – with 65% and 66% boundaries within 20ms of the manual boundary, and mean
Overlap Rate of 0.74 and 0.73, respectively – better than the aligner that used AmE
child speech alone, with 46% accuracy and 0.71 mean Overlap Rate, and MAUS with
59% accuracy and 0.69 mean Overlap Rate. They conclude that matching dialect is
more important than matching age.

Our Data

We have a growing corpus of New Zealand children performing an oral language as-
sessment task at their pre-school. Each child heard a story and was asked to re-tell it.

7This may have been an caused by the single-word utterances being more �nely chunked than the
spontaneous utterances

8Mahr et al. did not report the total duration of their recordings.

Volume 3, Issue 1, 31 December 2023



Language Development Research 189

The initial corpus for forced alignment included 38 children (21 boys, 17 girls) aged 3;6
- 4;11.

The literature on adult and child forced alignment would appear to o�er clear guide-
lines for aligning a corpus of child speech.

• The more similar the training and alignment speech, the better; the speaker’s
own speech is best (i.e. speaker-speci�c models) but if not, speaker-independent
models trained on similar speech work better.

• The closer the dictionary is to the actual pronunciations, the better; a dictionary
for the same language variety (with the same phoneme inventory, rhoticity etc.)
should be preferred.

• The more training data, the better.

However our initial attempts to force align the speech using LaBB-CAT’s default HTK-
based training of speaker-speci�cmodels and a non-rhotic dictionary suitable for New
Zealand English (NZE) produced poor results. We suspected that this kind of corpus
falls within a gap in the forced alignment literature.

Although the literature is clear that speaker-speci�c models are preferable, it is also
necessary to have enough training data to produce reliable models. Fromont &Watson
(2016) found that, for NZE, at least �ve minutes of speech is required for each speaker
for the Overlap Rate to plateau between 0.5 and 0.69. The most verbose child in our
corpus spoke for slightly less than threeminutes, andmany spokemuch less than this;
the least amount of speech for a single child was sixteen seconds.

We considered using speaker-independent models, either by grouping children in our
corpus together in order to train onmore than �veminutes of speech; our corpus con-
tains 29 minutes child speech, or 46 minutes including adult examiner speech. Or we
could use pre-trained models, which are trained on much more data than our corpus
contains. However, most models available for English are pre-trained on adult US En-
glish speech, which we suspected would be too di�erent from the speech in our cor-
pus.

Almost all of the data used for evaluation in the child speech forced alignment lit-
erature was controlled speech; short predictable sentences, and o�en single words,
elicited in a sound-attenuating laboratory environment. But our corpus is spontaneous
speech, and is �eld data recorded in environments with background noise. In many
cases the speech is low volume or the child is whispering. The literature appears to
have no recommendation for these circumstances; Mahr et al. (2021) are clear about

9Overlap Rate is a value between 0 meaning no overlap at all, and 1 meaning perfect overlap; see the
section called Overlap Rate for details.
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this: “we are hesitant to extrapolate beyond elicited laboratory speech.”10 Further-
more, in some cases the speech is articulated in a manner that’s so divergent from
adult norms, that even the correct transcription is debatable.

Faced with many doubts about how to proceed, we performed a number of experi-
ments in order to determine 1) which tool/procedure would yield the most accurate
alignments, and 2) how the resulting accuracy measured up against accuracies re-
ported in the literature. We expected some con�guration involving a non-rhotic dic-
tionary and training on some mix of the children’s own speech to result in the most
accurate alignments, but that the best accuracy would still be lower than in other stud-
ies, due to the age of the speakers and the spontaneous nature of the utterances.

Methods

We compared three commonly used HMM-based aligners, LaBB-CAT’s HTK forced-
alignment, P2FA (also built onHTK), andMFA (built on Kaldi), and di�erent alignment
procedures using those tools:

• train/align with speaker-speci�c models
• train/align with speaker-independent models
• pre-trained models using a pronunciation dictionary matching our non-rhotic
NZE data

• widely-used pre-trained models using a rhotic pronunciation dictionary

In order to easily and reproducibly automate speci�c con�gurations, we used LaBB-
CAT, which integrates with all three aligners11, and includes the nzilbb.labbcat R
package12, allowing the implementation of an R script to precisely specify forced
alignment con�gurations, and run forced alignment on di�erent subsets of the
corpus.

We used ten di�erent forced alignment con�gurations, which are all easily con�g-
urable options with the chosen forced aligners, requiring the minimummanual inter-
vention. The train/align con�gurations generally use the default options for the given
forced aligner (except where otherwise noted), and the pre-trained model con�gura-
tions use models and dictionaries that are readily available. They represent options
that were not only convenient for us to set up quickly for our own LaBB-CAT-based cor-
pus, but also would be easily con�gured for other sociophonetic research with similar
data, either via LaBB-CAT, or in the case ofMFA and P2FA, independently of LaBB-CAT

10Mahr et al. (2021), p. 2221.
11Although LaBB-CAT integrates with BASWeb Services, we could not tryMAUS for forced alignment,

because our data cannot be shared with a third party
12Fromont (2023)
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by using the command line interfaces of those forced aligners. The con�gurations are
compared in Table 1. We describe them in detail now.

LaBB-CAT-HTK con�gurations

The con�gurations we refer to as ‘LaBB-CAT-HTK’ use LaBB-CAT’s direct integration
with the HTK toolkit, which automates the eight steps for training acoustic models
with HTK laid out by Young et al. (2006) in Chapter 3 of ‘The HTK Book’.

For all train/align con�gurations using LaBB-CAT-HTK, the same pronunciation
dictionary was used: the CELEX English lexicon (Baayen et al. (1995)), a non-rhotic
lexicon based on ‘British English’, supplemented to include words not present in the
original lexicon, including non-standard child wordforms such as “comed”, “goed”,
“runned”, etc. Phonemic transcriptions are encoded using CELEX’s ‘DISC’ phoneme
symbols13.

The initial base-line con�gurationwas for speaker-speci�cmodels; each child’s speech
was aligned usingmodels trained only on their own speech (Speaker speci�c in Table 1).
We also speci�ed three speaker-independent con�gurations which grouped speakers
together for the training phase in groups of increasing size and decreasing speaker
similarity. Firstly, speakers were grouped by gender; each child’s speech was aligned
using models trained on speech of children of the same gender (Gender speci�c in Ta-
ble 1). Secondly, one set of speaker-independentmodels were trained using the speech
of all children together (Child independent in Table 1). Thirdly, one set of speaker-
independentmodelswere trained using the speech of all children and also adults in the
corpus (Speaker independent in Table 1). All speaker-independent models were trained
on more than �ve minutes of speech.

P2FA

The �nal HTK-based con�guration uses the P2FA pre-trainedmodels (P2FA in Table 1)
in order to compare accuracy of the LaBB-CAT-HTK train/align con�gurations above
with this commonly-used aligner. Thesemodels use ARPAbet phoneme symbols14 that
are di�erent from those used by CELEX, and are trained on rhotic US English adult
speech15. As a result, this con�guration used a supplemented version of the CMU Pro-
nouncing Dictionary (CMUdict).16

13Appendix A includes a table showing how these symbols relate to other symbol sets, and they are
described in section 2.4.1 of the CELEX English manual included with Baayen et al. (1995)

14See Appendix A.
15The P2FAmodels were trained on 25.5 hours of speech by adult American English speakers, specif-

ically speech of eight Supreme Court Justices selected from oral arguments in the Supreme Court of the
United States (SCOTUS) corpus (Yuan & Liberman (2008)).

16See Rudnicky &Weide (2014)
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MFA con�gurations

By defaultMFAuses a train/align procedure that �rst trains speaker-independentmod-
els using all speech, and then adapts these models to each speaker, so that the �nal
alignments use speaker-speci�c models. Our �rst MFA con�guration used this proce-
dure, using the same CELEX pronunciation dictionary as used by the LaBB-CAT-HTK
con�gurations (Speaker adapted in Table 1).

MFA also supports using a variable number of HMM states; each model uses fewer or
more states depending on what type of phoneme is being modelled (e.g. fewer states
for certain stops, but more for diphthongs). In order to achieve this, MFA requires
the phonemic transcriptions to use a speci�c set of IPA symbols, so we used a supple-
mented dictionary based on a non-rhotic ‘British English’ dictionary supplied byMFA17
(Variable state in Table 1).

MFA provides di�erent sets of pre-trained models, so our �nal three con�gurations
used pre-trained models and corresponding dictionaries. The �rst two con�gurations
use ‘General American English’ models using a rhotic dictionary encoded with the
same ARPAbet symbols as used by P2FA18. The �rst con�guration uses the models ‘as-
is’, without adapting the models to each speaker before alignment (GAM Unadapted in
Table 1), and the second includes the speaker adaptation step (GAM Speaker adapted
in Table 1) in order to be able to determine how much di�erence the speaker adapta-
tion of the models might make with our child speech data. The last con�guration uses
models trained on di�erent varieties of English using a non-rhotic ‘UK English’ dic-
tionary encoded using IPA (UK Speaker adapted in Table 1)19. This �nal con�guration
includes much more training data, including non-rhotic (as well as rhotic) varieties of
English, and a non-rhotic dictionary, so we suspected it might provide more accurate
alignments for our non-rhotic NZE speech than the GAM-based con�gurations above.
Because the dictionary is non-rhotic, as is much of the training data, it is marked as
such in Table 1.

17See https://mfa-models.readthedocs.io/en/latest/dictionary/English/English%20%28UK%29%20
MFA%20dictionary%20v2_0_0a.html.

18The English (US) ARPA acoustic model v2.0.0a (McAuli�e & Sonderegger (2022b)) was trained on
speech by 2484American English speakers from the LibriSpeech English corpus (Panayotov et al. (2015))
- for more information see https://mfa-models.readthedocs.io/en/latest/acoustic/English/English%2
0%28US%29%20ARPA%20acoustic%20model%20v2_0_0a.html

19English MFA acoustic model v2.0.0a (McAuli�e & Sonderegger (2022a)) trained on a number of va-
rieties of English from the following corpora: 2479.95 hours from Common Voice English v8.0 (Ardila et
al. (2020)), 982.3 hours from Librispeech English (Panayotov et al. (2015)), 124.31 hours from The Corpus
of Regional African American Language (Kendall & Farrington (2018)), 5.77 hours from Google Nigerian
English (Butryna et al. (2019)), 31.29 hours from the Open-source Multi-speaker Corpora of the English
Accents in the British Isles (Demirsahin et al. (2020)), 56.43 hours from The NCHLT speech corpus of the
South African languages (Barnard et al. (2014)), and 7.13 hours from the ARU Speech Corpus (University
of Liverpool) (Hopkins et al. (2019)) - for more information see https://mfa-models.readthedocs.io/en/l
atest/acoustic/English/English%20MFA%20acoustic%20model%20v2_0_0a.html
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Table 1: Comparison of forced alignment con�gurations

Aligner Model Training
Non-
rhotic

Training
Data

LaBB-CAT-HTK Speaker speci�c Train/Align X 0.3 – 2.9 min
LaBB-CAT-HTK Gender speci�c Train/Align X 13.1 – 15 min
LaBB-CAT-HTK Child independent Train/Align X 29.1 min
LaBB-CAT-HTK Speaker independent Train/Align X 46.1 min
P2FA P2FA Pre-trained × 25.5 hours
MFA Speaker adapted Train/Align X 29.1 min
MFA Variable state Train/Align X 29.1 min
MFA GAM Unadapted Pre-trained × 982.3 hours
MFA GAM Speaker adapted Pre-trained × 982.3 hours
MFA UK Speaker adapted Pre-trained X 3687.0 hours

Evaluation of Alignments

Manual alignments, for comparison purposes, were provided by one of the authors,
a graduate student in linguistics doing research speci�c to this data, using Praat
(Boersma & Weenink (2001)). The best pronunciation was selected from all possibili-
ties in CELEX for each word, using the ‘DISC’ phoneme symbols. 613 utterances were
manually aligned, totalling 28:32 duration, and including 8,514 aligned segments.
Manual alignment took approximately 40 hours.

In order to compare each manually aligned phone with its corresponding automatic
counterpart, it was necessary to create a mapping between the two sets of alignments.
This was complicated by two factors: a) each word may have a di�erent phonemic
transcription in the two alignments, because di�erent dictionaries might use di�erent
phonemes to transcribe the word,20 and forced alignment systems can select di�erent
pronunciations among all possible pronunciations of a word,21 b) each dictionary em-
ploys a di�erent set of symbols for each phoneme,22 and don’t necessarily use the same
phoneme inventories.23

20e.g. the word “for” is transcribed with two phonemes in CELEX (f$), but with three in CMUdict (F
AO1 R)

21e.g. CELEX transcribes the word “and” variously as {nd (ænd), @nd (@nd), @n (@n), Hd (n
"
d), H (n

"
), F (M

"
),

or C (N
"
).

22e.g. the word “transcription” is transcribed using the ‘DISC’ symbols in CELEX, tr{nskrIpS@n, the
ARPAbet symbols in CMUdict, T R AE2 N S K R IH1 P SH AH0 N, and using the IPA in the MFA ‘UK
English’ dictionary, t r ae n s c r I p S @ n.

23e.g. the CELEX includes diphthongs 7 (NEAR), 8 (SQUARE) and 9 (CURE), but in CMUdict they are
transcribed as multiple phonemes: IY R, EH R, and UH R respectively, and are similarly mismatched in
MFA’s ‘UK English’ dictionary, I @, E:, and U @ respectively
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In order to ensure the best possible mapping between di�erent alignments, we used
a common Minimum Edit Distance algorithm (Wagner & Fischer 1974), modi�ed to
ensure matching of similar phonemes across phoneme sets. Appendix A provides a
table showing direct correspondences assumed between di�erent symbol sets. The
arrows in Figure 1 illustrate how these mappings work; despite the presence of in-
serted/deleted segments (coloured grey), and also despite the di�erence in encoding
of the segment labels (the manual alignments above use CELEX ‘DISC’ symbols, while
the automatic alignments below use ARPAbet symbols), the algorithm correctly maps
corresponding phones to each other.

The literature includes a wide array of metrics for comparing alignments. We wanted
to be able to compare our child NZE accuracy with the adult NZE accuracy reported by
Fromont &Watson (2016)24, and that reported by Gonzalez et al. (2020)25, who reported
Overlap Rates of 0.569 and 0.646 respectively. We also wanted to compare accuracies
with other evaluations that used laboratory-based child speech; Knowles et al. (2018)
reported 75%-90% accuracy using what we call ‘Midpoint Containment’, and Mahr et
al. (2021) reported 86% accuracy using the samemetric. In addition Szalay et al. (2022,
Table 1.) reported Overlap Rates of 0.69-0.74. We report both of these metrics in our re-
sults purely to enable comparison with results from these previous experiments.

Both metrics are independent of the units used, and neither involve arbitrary thresh-
olds to be decided.

Overlap Rate

Paulo & Oliveira (2004) devised Overlap Rate (OvR) as a measure of how much two
intervals overlap, independent of their absolute durations. OvR is a value between 0,
where the two intervals being compared do not overlap at all, and 1, where the two
intervals have the same start and end times. OvR is calculated as follows:

OvR = CommonDur

DurMax
= CommonDur

DurRef + DurAuto − CommonDur
,

whereCommonDur is the duration in common between the automatically aligned and
manually aligned segments,DurRef is the duration of themanually aligned segment,
and DurAuto is the duration of the automatically aligned segment. DurMax is the
maximum duration of the sound �le covered by the pair of segments.

Figure 1 visualises how this works; the automatic alignment of the �rst vowel overlaps
with only a third of the corresponding manual alignment, so OvR is 0.333. The second

24Fromont &Watson (2016), Section 4.1, p418
25Gonzalez et al. (2020) p6, Figure 2.
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manually aligned vowel only covers half of the duration of the corresponding auto-
matic alignment, so OvR is 0.5. For the �nal consonant, both alignments completely
overlap each other, resulting in an OvR of 1.

Figure 1. Exampleofmappingmanually toautomatically alignedphones, andmetric com-
putation

Midpoint Containment

Knowles et al. (2018) devised ameasure that calculates the percentage of segments that
are ‘approximately correct’, de�ned as follows: ‘the force-aligned segment overlapped
with the midpoint of the corresponding manually aligned phone.’26 Mahr et al. (2021)
use the samemetric, calling it a ‘grossmeasure’.27 Hereweprosaically but descriptively
call it “midpoint containment”.

Figure 1 illustrates how alignments may match or not; the midpoint of the �rst man-
ually aligned vowel falls outside the bounds of the corresponding automatic interval,
so these alignments do not match. For both the overlapping second vowel, and the
perfectly aligned �nal consonant, the manual alignment’s midpoint falls within the
bounds of its automatic counterpart, so these alignments match.

26Knowles et al. (2018) p. 2491, under “Comparisons”
27Mahr et al. (2021), p. 4, under “Outcome Variables”
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Expectations

Given the general conclusions from the literature our expectations were as fol-
lows:

1. Overall performance would be lower than with adult speech, i.e. OvR will be
lower than 0.646 (Gonzalez et al. (2020)) and also 0.569 (Fromont&Watson (2016)),
because child speech is more varied than adult speech.

2. Overall performance would be lower than with controlled child speech, i.e. Mid-
point Containmentwould be lower than 86% (Mahr et al. (2021)), 75% (Knowles et
al. (2018)), and also lower than the 0.69mean OvR reported by Szalay et al. (2022),
because spontaneous speech is more varied than controlled speech.

3. Models trained on child speech would be better than those trained on adult
speech, because in general the more similar the training and alignment speech,
the better.

4. Non-rhotic dictionaries/models should perform better than rhotic ones; rhotic
alignments will include alignments for post vocalic /ô/ phones that are not
present in our non-rhotic NZE speech, so neighbouring automatic phones will
overlap less with their manual counterparts.

5. MFA will perform better than the HTK-based aligners (LaBB-CAT-HTK and P2FA
in our case), as found by González et al. (Gonzalez, Grama, et al. (2018), Gonzalez
et al. (2020)).

6. Vowels will be the best aligned segments, as previously reported by Knowles et
al. (2018) and Mahr et al. (2021).

Results

Table 2 compares both Overlap Rate and Midpoint Containment percentages for each
of the forced alignment con�gurations. All train/align con�gurations have ameanOvR
less than 0.3, and less than 50% Midpoint Containment, with the MFA con�gurations
performing worse than the LaBB-CAT-HTK ones. Conversely, all con�gurations using
models pre-trained on adult speech have a mean OvR greater than 0.3; the P2FA mod-
els produce a mean OvR of 0.345, the MFA GAMUnadapted models, 0.429, the MFA UK
Speaker adapted models, 0.440, and the MFA GAM Speaker adapted models, the high-
est mean OvR at 0.458. In terms ofMidpoint Containment, 48% of the P2FA alignments
contain the midpoint of the corresponding manual alignment, and more than 50% of
MFA alignments contain the manual alignment midpoint; 59% for GAM Unadapted
models, 62% for UK Speaker adaptedmodels, and 63% for GAM Speaker adaptedmod-
els.

Figure 2 shows the distributions ofOverlapRates for each con�guration. All train/align
con�gurations have a third quartile of less than 0.6, and a �rst quartile of 0 (along with
the P2FA pre-trained models). The variable state train/align models perform worst of
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Table 2: Mean OvR and percent midpoint-contained, for each forced alignment con-
�guration, with the best performing con�guration in bold typeface

Aligner Model Training Non-
rhotic

Mean
OvR

%

LaBB-CAT-HTK Speaker speci�c Train/Align X 0.228 37
LaBB-CAT-HTK Gender speci�c Train/Align X 0.261 42
LaBB-CAT-HTK Child independent Train/Align X 0.298 46
LaBB-CAT-HTK Speaker independent Train/Align X 0.276 42
P2FA P2FA Pre-trained × 0.345 48
MFA Speaker adapted Train/Align X 0.239 34
MFA Variable state Train/Align X 0.155 22
MFA GAM Unadapted Pre-trained × 0.429 59
MFA GAM Speaker adapted Pre-trained × 0.458 63
MFA UK Speaker adapted Pre-trained X 0.440 62

all, with a median of 0, although curiously there are a number of outliers with OvR
greater than 0.5. Only the pre-trainedMFAmodels manage a �rst quartile greater than
0, and all have a third quartile greater than 0.7.

Figure 3 shows the distributions of Overlap Rates for each con�guration, broken down
by segment category. For the HTK-based tools (the le� �ve con�gurations), there ap-
pears to be little di�erentiation in accuracy between di�erent segment types. But for
MFA (the right �ve con�gurations), vowels in particular seem to be very inaccurate
for train/align con�gurations, but quite accurate for pre-trained con�gurations. Apart
from those using MFA pre-trainedmodels, none of the con�gurations had a �rst quar-
tile higher than zero for any segment category.

Figure 3 also shows that, although the GAM Speaker adapted and UK Speaker adapted
con�gurations have similar �rst and third quartiles for fricatives, the second quartile
for GAM Speaker adapted is somewhat lower than for UK Speaker adapted. The mean
fricative OvR for GAM Speaker adapted is 0.359 and the corresponding mean for UK
Speaker adapted is 0.411.

Discussion

The most obvious result is that expectation 3., that ‘models trained on child speech
would be better than those trained on adult speech’, was not borne out by the con�g-
urations we tested. All con�gurations that used only adult data were more accurate
than all con�gurations that used any child data. This surprised us and apparently con-
tradicts Knowles et al. (2018): ‘For both corpora, training on adult speech led to poorer
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accuracy than training on child speech and can be summarized as follows: Adult-only
<Adult–child <Child speech only’28 although it’s in linewith Szalay et al. (2022) (section
4.1, p. 39) for whom the best aligners included adult data.

There are various possible explanations for this. Adult speech should be less phono-
logically varied than child speech, and represents the ‘target’ forms that children have
not yet settled on; perhaps this stability leads to more discerning acoustic models. Or
perhaps it’s simply because there was more adult speech (25 - 3687 hours) than child
speech (29.1 minutes) to train on. Knowles et al. had ten times this amount of child
data (5 hours), which yielded alignments that weremore accurate thanmodels trained
on adult speech (10 hours), so this may indicate that the latter explanation is correct:
volume of training data trumps similarity to the speech to be aligned. It’s clear that in
some cases adult training data leads to higher accuracy for child speech, but further
work is required to settle the question of whether this is because of the magnitude of
the training data or its qualities.

Another surprise is that the con�gurations using a rhotic dictionary outperformed
those using a non-rhotic dictionary. Using a rhotic dictionary for non-rhotic sponta-
neous speech inserts tokens of post-vocalic /ô/ which do not correspond to the speech.
This inevitably decreases alignment accuracy29, as the extra phone will invade the
durations of surrounding phones. This can be seen in Figure 4., which shows an ut-
terance from our corpus, with the correct manual alignment shown above, and the
the automatic alignment produced by MFA below. The fourth word, “for”, is correctly
transcribed with two phonemes, f $, but MFA has used the three-phoneme transcrip-
tion from its rhotic dictionary, F AO1 R, the last phone of which is an incorrect inser-
tion taking up most of the duration of the vowel, which has a resulting low OvR of
0.099.

The MFA rhotic dictionary produced marginally better alignments (0.458 mean OvR)
than the non-rhotic one (0.440 mean OvR) despite this ‘inserted /ô/ penalty’. We inves-
tigated the incidence of spurious /ô/ phones in these alignments, and found that there
were only 65 inserted /ô/ phones with a mean duration of 74ms, less than 1% of all the
phones found in this alignment.30

TheEnglish (US)ARPAmodels are seemingly somuchbetter than theEnglishMFAmod-
els that the e�ect of having extra post-vocalic /ô/ tokens is rendered irrelevant. This

28Knowles et al. (2018) p. 2492.
29If the spurious phones are of zero length, accuracy would not be a�ected, but there were no zero

duration insertions of this type in our data.
30Indeed /ô/ wasn’t even the most common spurious phone; there were more spurious /d/ and /@/

phones (118 and 68 tokens respectively), mainly representing the �nal phoneme of the words “and”,
“the” and “to”.
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Figure 4. Example utterance alignment including inserted rhotic /ô/ in the word ’for’ - cor-
rectly aligned regions are shown in light green, incorrectly aligned regions are shaded in
red, and the utterance spectrogram is shown above for reference

supports and perhaps explains conclusions of Gonzalez et al. (2020)31 and MacKenzie
& Turton (2020)32 that dictionary/variety don’t greatly impact measured performance:
the incidence of features that de�ne di�erences between varieties of the same lan-
guage (in terms of insertion or deletion of segments) are not frequent enough to make
much di�erence to overall alignment accuracy. However, this contradicts the advice
of Szalay et al. (2022) (section 4.1, p. 39): “using a dialect matched, AusE pronuncia-
tion dictionary is recommended”, and the impact of these discrepancies may indeed
be important for downstream research that uses the resulting automatic alignments.
For example if sociophonetic research is later conducted on word-�nal vowels, or on
rhoticity itself, the spurious /ô/ tokensmay signi�cantly interferewith the results.

This better performance cannot be explained by di�erences in training set size; the
models used with the GAMEnglish dictionary were trained on under a thousand hours
of speech, but still produced better alignments than the models used with the UK En-
glish dictionary, which were trained on over three thousand hours of speech. Apart
from the amount of training data and the pronunciations, there are two other dif-
ferences between these con�gurations: the latter was trained on numerous varieties
of English, and the phoneme sets were di�erently distributed; The GAM English dic-

31Gonzalez et al. (2020) p. 9, section 5.
32MacKenzie & Turton (2020) p. 11 section 6.
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tionary includes 39 stress-marked vowels and 24 consonants encoded in ARPABET33,
where the UK English dictionary includes 22 vowels and 46 consonants including vo-
calic and aspirated variants encodedwith IPA symbols34. Investigating the impact each
of these factors has is outside the scope of the current experiment, but it’s clear from
our results thatmore trainingdata doesnot inevitably result in better alignments.

When comparing the performance of HTK-based aligners with MFA, the results are
also nuanced. MFA did indeed perform better than HTK-based aligners under the
conditions we tested, and as the GAM Unadapted accuracy is only slightly below GAM
Speaker adapted, the di�erence in accuracy apparently doesn’t come down to MFA’s
speaker-adaptation process. But MFA was more accurate only using pre-trained mod-
els. MFA produced the worst alignments among the con�gurations we tested when
using a train/align procedure. The amount of training data is probably the important
factor here. Michael McAuli�e, the primary so�ware developer of MFA, notes that 3-5
hours of speech is required for good alignments.35 It seems that under the conditions
of our experiment, LaBB-CAT-HTKworks better with scarce data thanMFA does. More
rigorous comparison between these ASR toolkits may well identify forced alignment
methods, or attributes of training data, that yield di�erent results. However, under
the conditions we were working with – a relatively small amount of child speech, us-
ing the default procedures for LABB-CAT-HTK andMFA – train/align forced alignment
was more accurate using LaBB-CAT-HTK, although accuracy was low for both align-
ers.

When compared with results from other studies, our expectations were borne out. Ac-
curacy was lower than with adult speech, as the best mean OvR of 0.458 was lower
than both 0.646 (Gonzalez et al. (2020)) and 0.569 (Fromont &Watson (2016)). Similarly,
accuracy was lower with our spontaneous speech than with controlled child speech;
our best Midpoint Containment of 63% was lower than 86% (Mahr et al. (2021)) and
75% (Knowles et al. (2018)), and our best mean OvR was lower than 0.69 (Szalay et
al. (2022)).

Using MFA pre-trained models, vowels were indeed the best-aligned segments, con-
�rming results from Knowles et al. (2018) and Mahr et al. (2021). However, this was
not the case with other con�gurations. Although the English (US) ARPA models are
marginally better than the English MFA models overall, the latter was better at align-
ing fricatives. As noted earlier with reference to rhoticity, which models/dictionaries
turn out to be best depends somewhat onwhat types of segmentwill be analysed down-
stream.

33The GAM English phoneme set is shown in Appendix A
34The consonant variants of the UK English phoneme set is shown in Appendix A, Table 4
35Michael McAuli�e, “How much data do you need for a good MFA alignment?” (24 August 2021):

https://memcauli�e.com/how-much-data-do-you-need-for-a-good-mfa-alignment.html
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Conclusion

While there is an established literature on forced alignment methodology for adult
speech, accuracy with child speech has only recently received any attention from re-
searchers, and the best approach for dealing with �eld recordings of children has not
been established.

We found that MFA, using acoustic models pre-trained on ‘General American English’,
produced the most accurate alignments of spontaneous NZE child speech in our cor-
pus. These alignments were less accurate than is possible with adult speech of the
same variety, and with controlled child speech, and all future alignments in our grow-
ing corpus will require manual checking/correction.

Although the results of our experiments resolved a practical problem for us, identify-
ing a clear way forward for the force-alignment of our own corpus, we recognise that
they are speci�c to our speech data and the con�gurationswe tried, using conveniently
con�gurable tools designed speci�cally for sociophonetic research. More rigorous fur-
ther work would be required to tease apart the relative importance of the various fac-
tors – toolkit, technology, data preparation, amount of and nature of the speech, age
and dialect of speakers in the training vs. alignment data, etc.

For example somewhere between the half hour of speech we had available for train-
ing, and the two to �ve hours of speech used by Knowles et al. there may be a thresh-
oldwhere training on child speech alone yields better alignments than those produced
by using models pre-trained on adult speech. Furthermore, the recursive method of
forced alignment studied by Gonzalez, Travis, et al. (2018) may provide a boost in per-
formance. These are questions to be resolved by future investigation, on a larger cor-
pus of child speech.

In addition the present results compared only HMM-based forced alignment. How-
ever, Kaldi also supports the use of DNNs for forced alignment. It would be useful to
compare performance of DNN-based alignments with HMM-based ones, using Gen-
tle out of the box, or by training custom aligners as done by Szalay et al. (2022). They
point out that their best custom aligner was trained on the same AusE dataset as the
HMM-basedMAUS aligner, which performed theworst, concluding that the di�erence
in performance canbe attributed to usingKaldi andDNNs, rather thanHTKandHMMs
(Szalay et al. (2022), p. 39, section 4.2). If Kaldi alone were used to discover whether
DNNs or HMMs produce more accurate alignments, it could be determined whether
it’s the toolkit or the technology that makes the di�erence.

We conclude that alignment procedures that work well with adult data are not guaran-
teed to produce the best results for children. To maximise accuracy, automated align-
ment of language acquisition corpora requires special attention, and evaluating di�er-
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ent options on speci�c corpora is well worth the e�ort. Even so, our �nding with NZE
child speech was the same as that of Szalay et al. (2022, p.38 section 4) with AusE child
speech: manual correction is still required. We echoMacKenzie & Turton (2020)36 who
recommend that “these aligners are used in the manner for which they were designed
— as tools, and not as the complete replacement of a dedicated researcher”.
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Appendix A - Phoneme Symbol Sets

Di�erent English pronunciation dictionaries use di�erent sets of symbols. In many
cases, there are quirks that relate to the provenance and purpose of the dictionary;
for example the CMU Pronouncing dictionary (CMU Dict) has no symbol for schwa,
because unstressed vowels are instead su�xed with 0. Some of the MFA dictionaries
use IPA symbols, but transcribe diphthongs in unfamiliar ways, perhaps because of
e�orts by the developer to develop multi-lingual models. CELEX’s ‘DISC’ symbols are
similar to the SAMPA symbols familiar to many linguists, except they conform to the
principle that each phoneme can be represented by exactly one character. Below is a
table showing how di�erent symbols sets relate to each other.

Table 3: Vowels

Example IPA MFA DISC CMU Dict37

kit I I I IH
dress E E E EH
trap æ æ { AE
strut 2 5 V AH
foot U U U UH
another @ @ @
�eece i: i:/i i IY
bath A: A: # AA
lot 6 6 Q AO
thought O: 6: $ AO
goose u: 0:/0 u UW
nurse 3: 3:/3 3 ER
face eI ej 1 EY
price aI aj 2 AY
choice OI Oj 4 OY
goat @U @w 5 OW
mouth aU aw 6 AW
near I@ I @ 7 IY R
square E@ E: 8 EH R
cure U@ U @ 9 UH R
timbre æ̃ c
détente Ã: A q
lingerie æ̃: 0
bouillon 6̃: ~

37All vowels in CMU Dict’s ARPABET encoding have three variants, each su�xed with a digit: 0 for
unstressed, 1 for primary stress, and 2 for secondary stress
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Table 4: Consonants

Example IPA MFA DISC CMU Dict

pat p p/ph/pj p P
bad b b/bj b B
tack t t/th/tj t T
dad d d/dj d D
cad k k/kh/c/ch k K
game g g/é g G
bang N N N NG
mad m m/mj/M m M
nat n n/ñ n N
lad l l/ë/L l L
rat ô ô r R
fat f f/fj f F
vat v v/vj v V
thin T T T TH
then D D D DH
sap s s s S
zap z z z Z
sheep S S S SH
measure Z Z Z ZH
yank j j j Y
had h h/ç h HH
wet w w w W
cheap tS tS J CH
jeep dZ dZ _ JH
loch x x
bacon N

"
C

idealism M
"

M
"

F
burden n

"
n
"

H
dangle l

"
ë
"

P
car alarm * R
uh-oh P P
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