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Abstract: The logical problem of language acquisition has been at the forefront of psycholinguistics 
and behavioral neuroscience for decades. One of the most influential answers to the problem of how 
successful acquisition occurs on the basis of noisy input suggests that the child is aided by innate prin-
ciples and parameters (P&P). These are conceived as part of our biological endowment for language. 
Previous work on the computability of parametric models has focused on the process of parameter-
setting, leaving settability unaddressed. Settability is a key notion in parametric models since it pro-
vides an answer to the logical problem of language acquisition: the setting of one parameter carries 
implications for the settability of others, minimizing the child’s task. However, a mathematical analy-
sis of the expected probability of successful computation of settability relations has not been carried 
out. We report results from a novel program developed to calculate the probability of successful com-
putation of a network of 62 linguistic parameters as attested in 28 languages, spanning across 5 lan-
guage families. The results reveal that some parameters have an extremely low probability of success-
ful computation, such that trillions of unsuccessful computations are expected before a successful set-
ting occurs. Using the same program, we performed an additional analysis on a different network, 
covering 94 parameters from 58 languages and 15 language families. In this case, the estimated number 
of expected unsuccessful computations rose from trillions to quadrillions. These results raise concerns 
about the computational feasibility of the highly influential P&P approach to language development. 
Merging insights from various acquisition models, including some developed within P&P, a biologi-
cally plausible alternative is offered for the process of deciphering a target grammar in the acquisition 
of both spoken and signed languages. Overall, our analysis of the P&P approach to language acquisition 
centers learnability and computability constraints as the major factors for determining the psycholog-
ical plausibility of grammar development. 
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Introduction 
 
Language acquisition and its guiding principles have been at the forefront of psycho-
linguistic and developmental research for over five decades. Among the central re-
search questions of the field, the logical problem of language acquisition stands out: 
How is language acquired, given the noisy nature of the linguistic input that a child 
receives during the early stages of development? The poverty of the environmental 
stimulus that characterizes the input sharply contrasts with the richness of the attain-
ment that a neurotypical child will have as a mature speaker/signer (Chomsky, 1965; 
1980). In (bio)linguistics and psychology, the highly influential Principles & Parame-
ters framework (P&P) has provided an answer to the logical problem of language ac-
quisition by positing that the child is aided by some innate principles that help them 
navigate the space of cross-linguistic variation in the process of acquisition (Chom-
sky, 1981). According to P&P, the child is innately equipped with a cognitive apparatus 
called Universal Grammar. Universal Grammar can be viewed as a cognitive map that 
consists of (i) a finite number of universal principles and (ii) a small number of pa-
rameters, that are also universal, but come with a set of values to which they are var-
iably set across different languages. Although this idea has been around for several 
decades and has been criticized on various grounds, recently there has been a re-
newed interest in it, especially from a computational perspective that integrates Uni-
versal Grammar and non-linguistic principles of computation in the process of lan-
guage development (Yang et al., 2017; Kazakov et al., 2018; Manzini, 2019). Even 
though the P&P framework removes some of the burden originally placed on the Eval-
uation Measure, it remains unclear what type of learning algorithm can manoeuvre 
itself through a space of grammars.  
 
From a theoretical perspective, this organization of Universal Grammar in terms of 
principles and parameters brings an important benefit. Consider the overall volume 
of the input data a child has to process in order to acquire their language. Not only is 
it vast, but the task at hand entails dealing with noisy data and complex rules, whose 
properties the child has to decipher in the earliest stages of development. The logical 
problem of language acquisition addresses the question of how the child achieves this 
monumental task. The answer, within the P&P framework, is that the child’s cognitive 
map consists of a finite number of parameters that form certain paths (Figure 1), such 
that the variation space is neatly compartmentalized, rendering the child’s task con-
siderably easier.  
 
To explain the process, at point zero of acquisition the child has routes of the cognitive 
map open, but upon setting a few initial parameters to one value instead of another, 
the child selects a path. This selection brings with it the notion of settability: The val-
ues of the first-set parameters carry implications about the settability of others that 
are yet to be set. After selecting a route through setting a parameter to one value, the 
child is bound against exploring other routes, at least not in the context of that lan-
guage. Parameters in these other routes will not be set to a value on the basis of the 
data the child is exposed to, because they are not settable: they do not form part of 
the route the child has taken. Since the child will never have to deal with them, the 
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variation space that they have to navigate is substantially reduced. This explains (pu-
tatively) how the child performs this complex task so fast.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure	1.	A	parametric	hierarchy	(adapted	from	Baker	2003).		
 
To define the critical notions of setting and settability, parameter setting refers to se-
lecting a value for a parameter, based on data from the target language. Parameter 
settability refers to whether a parameter forms part of the route the learner has taken. 
To give an example based on Figure 1, ‘adjective neutralize’ is not settable in French 
(i.e., it does not form part of the route to French), but it is settable and set to a specific 
value in Mohawk. A settable parameter is always set based on language data. There-
fore, setting differs from settability in that the latter only arises given the existence of 
an implicational network among parameters (i.e., a network of dependencies that spec-
ifies that the settability of parameter X depends on having set parameter Y to one 
value instead of another, as shown in Figure 1). In this sense, the crucial difference 
between the two notions, setting and settability, boils down to the fact that the process 
of setting/value selection does not bear upon the existence of an implicational net-
work; the latter is only informative about settability.  
 
The processes of setting and settability are formally presented in (1). 
 
(1a) Setting  
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Given a parametric hierarchy composed by a series of nodes Ni, where	𝑖 ∈ ℕ, 
setting is the process of selecting a binary value 𝑆! = {+𝑁! 	𝑜𝑟 − 𝑁!}.  If you get 
input z, select a value. If z matches the hypothesized value, set N to this value. 
If not, select the other value and set N. Reach state Nvalued. 

 
(1b) Settability 
 

Go to the next node N2. Check whether there is a path that connects N2 to any 
previous node (in this example, Nvalued). A path entails a logical expression (e.g., 
N2=(N−)). If there is no path, set N2 following the process described in Setting. 
If there is a path, determine its satisfiability. A path is satisfied if the parts of 
the logical expression match the values of previously set nodes (e.g., if the log-
ical expression is N2=(N−), then Nvalued must be set to −. If it is not, the path is 
not satisfied and settability of N2 cannot be reached on this path). Repeat for 
every path that connects N2 to previous nodes. If one (or more than one, but at 
least one) path is satisfied, follow the process described in Setting to set N2. If 
no path is satisfied, rewrite N2 as N2not-settable. 
 
There are two possible outcomes: N2valued or N2not-settable. Once any of the two is 
reached, go to the next node N3 and repeat the process. When all nodes have 
reached one of the two states, Nvalued or Nnot-settable, halt the process. 

 
These two notions, setting and settability, have not been investigated to equal de-
grees. Previous work concerning the computation of parametric models of language 
acquisition has focused almost exclusively on analyzing setting relations; for exam-
ple, the number of linguistic examples and initial hypotheses that are needed for the 
child to set the parameters that correspond to their target language (Gibson & Wexler, 
1994; Niyogi & Berwick, 1996). Settability has not been addressed from a computa-
tional perspective, in part because until recently it was largely assumed that there is 
only one way of reaching settability for a given parameter in a given language; an 
assumption that voids the need for further computation. 
 
To illustrate this assumption, Figure 1 shows that there is a single way to reach the 
settability of any parameter in this parametric hierarchy (e.g., ‘adjective neutralize’ is 
reached exclusively by setting polysynthesis to [+]). The only work that addresses the 
computation of settability relations challenged this assumption of unique settability 
(Boeckx & Leivada, 2013), through examining an elaborate network of parameters 
from the nominal domain (henceforth, the network, Longobardi & Guardiano, 2009; 
Figure 2). 
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Figure 2. The analyzed network consists of 63 binary parameters from the nominal 
domain across 28 languages (adapted from Longobardi & Guardiano, 2009). The first 
column presents the parameters and the settability path(s) on which each parameter 
is settable. If a settability path is not available in a language, the corresponding pa-
rameter is marked with 0 (e.g., if [5settable] depends on [4−], if the latter is in any 
other state, the former is marked with 0, which indicates that the parameter is not 
settable in the specific language). ‘,’ means ∧. 
 
The assumption of unique settability was investigated through the use of a program 
that calculated whether the settability paths in Figure 2 were satisfied in each lan-
guage-parameter pairing that exists in the network (Boeckx & Leivada, 2013). For ex-
ample, if the network specifies that the settability of parameter (P) 14 is reached on 
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the basis of setting P7 to + and P12 to −, the settability path would be: [14settable] = 
[7+] AND [12−]. The program read these paths in the form of logical expressions and 
checked whether they were satisfied in the input it received. The input was the states 
of each parameter in each language, as they are shown in the language columns of 
Figure 2. Proceeding with the previous example, if in language X, P7 was set to + and 
P12 was set to −, the program returned the outcome ‘true’ for [14settable]. If P7 and 
P12 were in any other state (i.e., set in the opposite value or not-settable), the program 
returned the outcome ‘false’, which means that P14 is not settable (on this settability 
path) for language X. 
 
As the ‘OR’ nodes in the first column of Figure 2 suggest, the network makes available 
different paths for the settability of many of its parameters. Until the computation of 
the settability relations of every language-parameter pairing, it was unclear whether 
different settability paths existed for different languages or whether the same lan-
guage could involve more than one path for the same parameter; something that 
would disprove the assumption of unique settability. Previous work on the computa-
tion of settability relations determined that there are different ways to reach settabil-
ity of a parameter, not only across but also within languages (Boeckx & Leivada, 2013). 
For example, Table 1 shows that for many languages in the network, parameter 29 is 
not settable (e.g., It[alian] in the second column). For other languages, the parameter 
is settable in one (e.g., path 4 in Rom[anian]) or more ways (e.g., paths 3 and 4 in 
Ba[sque]) 
 
Table 1. Parameter 29: ± Postpositional Genitive. 1 signals the availability of the cor-
responding settability path in the relevant language, whereas 0 signals the unavaila-
bility of the path. When a number node in the first column has an attached parenthesis 
on its right (e.g., 2+(1+)), the node inside the parenthesis is the settability path of the 
node outside the parenthesis, until an independent parameter is reached. In this table, 
the settability of parameter 29 is possible on the basis of setting either 27 to + or 28 to 
+. Both 27 and 28 are dependent parameters, settable in two ways each, either 
through setting 25 to + or 26 to  −. Parameter 25 is an independent parameter which 
means that its settability does not depend on the setting of other parameters (Boeckx 
& Leivada, 2013). 
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27+(25+) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 
28+(25+) 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 0 0 0 0 0 
27+(26-
(25-)) 

0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 1 1 0 0 0 0 1 0 1 1 1 

28+(26-
(25-)) 

0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 

 
However, there is a crucial and thus far unproven assumption behind previous work 
on the computation of settability relations. The program that was used in Boeckx & 
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Leivada (2013) was a semi-automatic one: the settability paths were not computed by 
it, but were given to it as predefined logical expressions. The crucial assumption is 
that the processing system, be it the human cognitive parser or a custom-made pro-
gram that simulates the process of computation, can successfully compute more than 
one settability path for a single parameter. If the settability of a parameter can be 
determined in more than one way, the parser must engage in some kind of computa-
tion that exhaustively checks all the paths that lead to it in order to determine whether 
the parameter is settable. This happens because the process of determining settability 
is a necessary prerequisite for the process of parameter-setting. Given that (i) not all 
parameters are settable in all languages and (ii) the learner does not know a priori 
which parameters are not, because the settability paths become available progres-
sively, depending on the value of earlier set parameters, the learner must engage in 
some kind of computation that determines whether the parameter that it encounters 
next in the hierarchy is settable or not.  
 
The aim of the present work is to spell out the computation of settability relations, 
locally for each dependent parameter of the analyzed network. More specifically, by 
means of treating each settability path as a logical expression (examples (2)-(3)), the 
satisfiability of each path must be calculated by the parser, be it the human brain or, 
in this case, a program that will simulate the computational process. In terms of the 
parametric network that will be analyzed, the notion of satisfiability refers to whether 
a path involves parameter values that match the input (given in Figure 2), such that 
this path is available in a language-parameter pairing, making the parameter settable 
in the specific language. 
 
(2) The logical expression for the second settability path of P10: (5−) 	∧ 	(2+) 	∧ 	(1+) 
 
(3) The logical expression for all the paths of P10: ((5−) 	∧ 	(2+) 	∧ 	(1+)) 	∨ 	((6−) 	∧
	(5+) 	∧ 	(2+) 	∧ 	(1+)) 	∨ 	(7+)  
 
The computation that follows operates on the basis of two important characteristics 
of the network and the learner respectively. First, if a parameter involves more than 
one settability path, the computation does not halt after finding a satisfiable path for 
a parameter. Instead, all paths need to be checked for satisfiability. In order to under-
stand this characteristic, it is necessary to take into account that a parameter’s setta-
bility paths often materialize at different times. For example, Table 2 shows that for 
P24, the first path becomes available after P21 is set to +, while the second path ma-
terializes after P22 is set to +. Even if the availability of a path for P24 was to be 
checked when [21+] was achieved, the computation would need to be re-run when 
[22+] was achieved, because not all languages set P24 on the first path (e.g., Ba in table 
2). 
 
Table 2. Parameter 24: ± Count-Checking N. 1 signals the availability of the corre-
sponding settability path in the relevant language, whereas 0 signals the unavailabil-
ity of the path. ‘,’ means ∧ (Boeckx & Leivada, 2013). 
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21+  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 
22+(7+, 
21-) 

1 1 1 1 1 1 0 0 0 1 1 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 

22+((5-
(2+(1+))
), 21-) 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

22+((6-
(5+(2+(1
+)))), 
21-) 

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 
 
The second important characteristic is that the learner cannot remember the para-
metric nodes that formed part of a previously checked path and reuse this infor-
mation when checking paths that materialize later. For example, the last two paths of 
P24 in Table 2 share some parameters. Still, the satisfiability of the logical expression 
needs to be checked for the last path too. The reason has to do with memory limita-
tions. Even setting aside interference concerns that arise from keeping track of paths 
that materialize at different points (hence are separated by the setting of other param-
eters that occurs in between their materialization), working memory has a capacity 
of maintaining four units, on average (Cowan, 2000). A set of three parametric nodes 
and their values already exceeds this capacity, and most paths are considerably 
longer than this.  
 
Not only is this information not retainable in memory due to its heavy load, but the 
parser does not have memory that goes beyond the current state. Parametric models 
in language acquisition have long been described as involving memoryless pro-
cessing, in the sense that at any step the learner has no recall of prior input or states, 
beyond the ones currently entertained (Page, 2004; Fodor & Sakas, 2005; Fodor, 2009). 
This memoryless character of the learning process has also been a crucial assumption 
in prior work on the computation of setting relations in parametric models (Niyogi & 
Berwick, 1996; 1997). We stress that while aspects of contemporary neuroscience sup-
port a view of the brain’s memory as being capable of a pushdown stack (beyond de-
terministic pushdown automata), the mature state of a mildly context-sensitive gram-
mar would presumably not be attainable immediately to the infant (Gallistel & King, 
2009). This means that when the learner deals with the settability of P24 (Table 2), it 
cannot shorten its last three paths through rewriting P22 as settable/non-settable (i.e., 
it will not remember whether P22 was or was not settable in a language and replace 
the paths that determine its settability with this information), because it lacks the 
read/write memory of a Turing machine. Put differently, the four paths of P24 that 
are shown in Table 2 cannot be rewritten as two paths, 21+ and 22+, by means of 
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collapsing the different ways of reaching the settability of the latter. Additionally, 
such a move, apart from clashing with standard assumptions about properties of the 
brain, would raise empirical concerns. For example, Table 2 shows that French sets 
this parameter on two paths that depend on two different ways of reaching the setta-
bility of P22 (i.e., paths 2 and 4). Collapsing these two into one would simply not cap-
ture the facts for this language. 
 
Taking into account these two characteristics, the present work aims to determine the 
computability of the settability paths behind the parameters of the analyzed network, 
through calculating the probability of running into loops that impede halting. For the 
computation to be successful, the learner needs to check the satisfiability of all the 
settability paths behind a parameter and halt. For example, if a parameter involves 
only two settability paths, A and B, further computation is not necessary, because the 
parser keeps track of the current state and will proceed to the next path without run-
ning into a loop: after checking both paths in one of the two possible orders, AB or 
BA, the computation will halt successfully. We can thus say that a parameter that has 
two settability paths has two ways of computation (i.e., two ways or orders of parsing 
the set of two paths): AB and BA. However, as the number of paths grows, the number 
of ways a set of paths can be checked for satisfiability also grows: two paths have two 
possible ways of computation (AB or BA), three paths have six ways (ABC, ACB, BAC, 
BCA, CAB, CBA), etc. In order to determine to what degree the ways of computation 
grow in the parametric network under examination, the program we describe below 
was designed to automatically calculate the probability of successful computation for 
each dependent parameter of the network, by estimating the ratio of successful com-
putation to unsuccessful computation. The former refers to the number of ways the 
entire set of paths behind a parameter can be computed (i.e., checked for satisfiabil-
ity) without running into loops; the latter refers to the number of ways that it runs 
into a single loop. 
 

Method 
 
The Longobardi & Guardiano network (Figure 2) consists of 63 parameters in 23 con-
temporary and 5 ancient languages, mostly from the Indo-European family. It is one 
of the most detailed parametric networks in the literature, rendering it an ideal can-
didate for computing settability relations. The present analysis used the slightly 
amended version of the network that was presented in previous work on the comput-
ability of parametric relations (Boeckx & Leivada 2013), in which parameter 62 was 
eliminated due to errors in its formulation. This elimination reduces the total number 
of the discussed parameters from 63 to 62. From these 62 parameters, 21 are settable 
on more than two paths, and hence these are the parameters analyzed in the present 
work. 
 
In order to calculate the number of possible ways of successful computation (i.e., no 
loop), for n number of paths, 𝑛! = 𝑛 · (𝑛 − 1) · (𝑛 − 2) · … · 2 · 1. For example, if n = 3, 
in the first random selection of a path, there are three options to choose from. In the 
second selection, there are n−1 options, and in the third selection, there are n−2 
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options, since no repetitions are permitted in successful computation. Therefore, for 
𝑛	 = 	3, there are 3	 · 2	 · 1	 = 6 ways of computation that do not run into a loop.  
 
Calculating the ways of computation that feature a loop (i.e., one repetition of a pre-
viously checked path), in the first and the second random selection of a path, there 
cannot exist any repetition: in the first one, there is nothing to be repeated, and in the 
second one, the first selection will be remembered as the current path from which 
the learner is moving. From the third random selection of a path onwards, the total 
number of ways of unsuccessful computation is the sum of the different ways of un-
successful computation when we take a subset k of n. The formula to calculate this is 
the following: 
 

=n · (n − 1) · … · ?n − (k − 2)A · (k − 2)
"#$

"#%

 

 
For example, if a parameter has 5 settability paths (𝑛	 = 	5), for 𝑘	 = 	1 and 𝑘	 = 	2, 
there cannot be any repetitions. For 𝑘 = 3, where 3 is the third random selection of a 
path, the number of ways of computation without repetition is 𝑛 · (𝑛– 1) 	= 	5 ·
(5– 1) 	= 	20. In order to calculate the number of ways of computation that feature a 
repetition in this third selection, this number must be multiplied by the number of 
paths that can be repeated. This is 𝑘– 2 because the learner keeps track of the current 
state, so it cannot repeat the path it last checked. Therefore, for the third selection,  
(𝑘– 2) · 20 gives a total of 20. For 𝑘	 = 	4, the possible ways of computation without 
repetition are 𝑛 · (𝑛– 1) · (𝑛– 2) 	= 	5	 · 	4	 · 	3	 = 	60. This is multiplied by the number 
of paths that can be repeated, which is 𝑘– 2 = 2, thus for 𝑘	 = 	4, the number of ways 
of computation that have a repetition is 60	 · 	2	 = 	120. For 𝑘	 = 	5, the possible ways 
of computation without repetition are 𝑛 · (𝑛– 1) · (𝑛– 2) · (𝑛– 3) 	= 	120. This is multi-
plied by the number of paths that can be repeated, which is 𝑘– 2	 = 	3, so for 𝑘	 = 	5, 
the total number of ways of computation with repetition is 120	 · 	3	 = 	360. Overall, 
the total number of ways of unsuccessful computation for 𝑛	 = 	5 is 360	 + 	120	 +
	20	 = 	500.  
 
For 𝑛	 = 	5, the number of possible computations with and without loops is small, 
hence easy to calculate. However, many of the parameters in the analyzed network 
involve more than 10 paths. For this reason, a program was developed in Python in 
order to carry out the computation automatically (see Appendix for code). The pro-
gram asks the user to provide the number of paths that should be computed. Upon 
being given a number followed by ‘enter’, it performs the calculation and asks the 
user whether they wish to perform another calculation for a different number of 
paths. Pressing ‘1’ and then ‘enter’ restarts the process for another calculation, while 
pressing ‘2’ and ‘enter’ closes the program. The program can be used to perform these 
calculations for any parametric model. 
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Results 

The analysis produced two results: (i) the number of ways of successful and unsuc-
cessful computation and (ii) the probability of successful computation for each pa-
rameter. Computation here refers not to the process of parameter-setting, but rather 
to going through the settability paths behind each parameter by means of checking 
the satisfiability of the logical expressions behind the paths ((2)-(3)). As noted, Figure 
2 shows the Longobardi & Guardiano network. However, it provides no information 
as to how many paths the learner has to go through in order to determine settability 
and how many ways of computation (i.e., the process of “going through the set of 
paths”) exist. Figure 3 addresses this gap by showing the degree to which the numbers 
for successful and unsuccessful computation rise in relation to the number of paths. 
More specifically, the average number of paths for the analyzed parameters is 8. For 
𝑛	 = 	8, there are 40,320 ways of successful computation and 375,368 ways of unsuc-
cessful computation. This means that when a parameter has 8 settability paths, the 
memoryless parsing process has a total of 415,688 ways of going through them in or-
der to check their satisfiability. For 10 paths, the number rises to 3,628,800 ways of 
successful computation and 46,253,610 ways of unsuccessful computation, while for 
12 paths, the equivalent numbers are 6,227,020,800 and 1.11471e+11. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3. Number of ways of successful and unsuccessful computation across paths. 
 



 Language Development Research  
 
 

Volume 2, Issue 1, 31 December 2022 
 

116 

Focusing on the Longobardi & Guardiano network, Figure 4 shows the ways of suc-
cessful and unsuccessful computation for the parameters that have 3 or more setta-
bility paths. With the exception of the parameters that have just 3 paths, for all other 
parameters, the number of computations that run into a loop is considerably higher 
than the number of successful computations. 
 

Figure 4. Number of ways of successful and unsuccessful computation for the 21 pa-
rameters of the analyzed network. 
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The analyzed parameters involve a total of 169 settability paths. The probability of 
successful computation for each parameter independently is given in Figure 5.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5. Probability of successful computation for the 21 parameters of the analyzed 
network with each parameter treated as independent. 
 
If a parameter has 3 or more settability paths, the probability of successful computa-
tion is equal or lower than 50%, respectively. However, the analyzed parameters are 
dependent parameters: their settability depends on having set other parameters to one 
value instead of another. As Figure 4 shows, in the Longobardi & Guardiano network, 
the first parameter that has 3 paths is P10. For 3 paths, the probability of successful 
computation on the first try is 50%. The second parameter that has 3 paths is P11. If 
this is taken as an independent event, the probability of successful computation is 
again 50%. However, if one wants to calculate the probability of a second successful 
computation under the assumption that the first parameter was computed success-
fully in one try, the conditional probability of successful computation in this second 
step is 25%. Table 3 shows that by the time the fifth parameter with 3 or more paths 
is encountered, the conditional probability of successful computation is 1.7%. 
 
Table 3. Conditional probability of successful computation in one attempt (Longo-
bardi & Guardiano network). 
 

Parameter Ways of computa-
tion without loop 

Ways of computa-
tion with one loop 

Conditional proba-
bility of successful 
computation  

P10 - 3 paths 6 6 50% 
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P11 - 3 paths 6 6 25% 
P22 - 3 paths 6 6 12.5% 
P23 - 3 paths 6 6 6.25% 
P24 - 4 paths 24 60 1.7856% 
P29 - 4 paths 24 60 0.5101% 
P40 - 3 paths 6 6 0.2550% 
P44 - 3 paths 6 6 0.1275% 
P45 - 6 paths 720 4230 0.01858% 
P46 - 6 paths 720 4230 0.00269% 
P47 - 6 paths 720 4230 0.00039% 
P48 - 6 paths 720 4230 0.000057% 
P49 - 7 paths 5040 38262 0.00000662% 
P50 - 3 paths 6 6 0.00000331% 
P55 - 3 paths 6 6 0.00000165% 
P56 - 15 paths 1.30767e+12 2.79027e+13 0.0000000740% 
P57 - 4 paths 24 60 0.0000000211% 
P58 - 16 paths 2.09228e+13 4.82395e+14 0.000000000878% 
P60 - 23 paths 2.5852e+22 9.0699e+23 0.0000000000243% 
P61 - 12 paths 479001600 7751595852 0.00000000000141% 
P62 - 36 paths 3.71993e+41 2.13604e+43 0.00000000000002% 

 
These findings raise concerns about computability, even if one assumes that 

the learner can somehow keep track of the fact that they have run into a loop, hence 
know that the computation should be re-run. This is highly pertinent in the context 
of a memoryless parsing process that knows only the current state. To explain the 
process from the learner’s perspective, if on the first random selection of a path, A is 
chosen out of a set of paths ABCD, when the repetition of A occurs in the fourth selec-
tion (i.e., ABCA), the computation runs into a loop. Of course, the program that sim-
ulates the process keeps track of this possibility and flags it as a loop, because it was 
designed to do so. Yet the learner, who is equipped with a memoryless parser that 
lacks this feature, has no way of remembering which option was selected in the 
first/nth random selection of a path. If the learner keeps track of the current state, 
ABCC can be recognized as a loop and be avoided, but ABCA cannot. In other words, 
the parser is oblivious to the fact that it runs into a loop more often than not.  

Even if we endow the parser with the ability to recognize a loop and rerun the 
computation, concerns about computability are not sidestepped. The reason boils 
down to how the numbers of successful and unsuccessful computations were calcu-
lated above. It is important to stress that the developed program treats the presence 
of a single loop as an instance of unsuccessful computation. This means that if a pa-
rameter is settable on 4 paths ABCD, the order ABCA is a possible outcome that the 
program counts as unsuccessful, but ABCAB or ABAB are not possible outcomes for 
the program. Put another way, the program is purposely designed to count the event 
of falling into one single loop as the only case of unsuccessful computation, but in 
reality, the number of computations that involve a loop are infinite.  
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Restricting the possible number of unsuccessful computations by limiting the 
number of the random selection of paths to the number of paths (i.e., if a parameter 
has 4 paths ABCD, the learner is allowed to perform only 4 events of random path 
selections, enabling ABAB as an unsuccessful outcome, but not ABABA, thereby lim-
iting the number of unsuccessful computations) does not alleviate concerns about 
computability. Under this limitation, a parameter with 36 settability paths has a total 
of 	𝑛 · (𝑛 − 1)$&' = 36 · 35%( = 3.97𝑒 + 55 ways of computation. Consider the compu-
tations that do not involve a repetition (Table 3; 3.71993𝑒 + 41). There are 3.96903𝑒 +
55 ways of unsuccessful computation, which translates to a 9.3 × 10&'%%	 probability 
of (the settability relations behind) this parameter being successfully computed in the 
first try. If a parameter has this probability of successful computation, the expected 
number of unsuccessful computations before a successful one occurs is:  

 

𝐸 =
1	 − 	𝑝
𝑝 = 	

1	 − 	0.0000000000009372397825
0.0000000000009372397825 = 1.06696𝑒 + 14 

 
In other words, it is expected that more than 106 trillion unsuccessful computations 
will occur before a successful computation takes place.  
 
To put the obtained results in comparison, we performed a second analysis using a 
different pool of data. Ceolin et al. (2021) present an expanded network that consists 
of 94 parameters from the nominal domain, covering 58 languages from 15 language 
families (Figure 6).  
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Figure 6. The Ceolin et al. network consists of 94 parameters from the nominal do-
main across 58 languages (Ceolin et al., 2021). The column ‘Implication(s)’ presents 
the settability path(s) on which each parameter is settable.1 
 

 
 
 
 
 
 
1 For the purposes of our analysis, part of the logical expression behind the last parameter (i.e., FVP) 
was changed from FAG to FGA, following personal communication with Cristina Guardiano.  
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This network involves 82 dependent parameters, the settability of which de-
pends on the setting of other parameters. Of these, 25 parameters are settable on 3 or 
more paths, and these are the ones we analyzed. Specifically, we converted the de-
pendencies given in the ‘Implication(s)’ column (Figure 6) into mathematical expres-
sions in the following way. If a dependency involves two parameters linked by ‘,’ (i.e., 
∧), both parameters must form part of every settability path behind this parameter, 
such that following Boolean logic this was expressed as a multiplication. If a depend-
ency involves two parameters linked by ‘OR’ (i.e., ∨), each of the two parameters cor-
responds to a different way of reaching settability, so this was expressed as an addi-
tion. Example (4) illustrates the mathematical expression of a hypothetical example 
that has a structure that is found in the analyzed network (i.e., parameter 20, label: 
NWD, Figure 6).  
 
(4) Parameter A = +B, +C or -D ⇔ 1 x (1+1) = 2 paths 
 
In (4), the assumption is that parameters B, C, and D involve one settability path each. 
When this is not the case, the number of paths behind each parameter must be en-
tered.  
 Table 4 presents the results of the mathematical expression of the relevant pa-
rameters in terms of settability paths as well as their probability of successful compu-
tation. For the latter, the Python program was used to perform the calculations.  
 
Table 4. Dependent parameters with 3 or more settability paths and their (condi-
tional) probability of successful computation (Ceolin et al. network). 
 

Parame-
ter 

Mathematical ex-
pression of the 
dependencies 

Ways of 
computa-
tion with-
out loop 

Ways of 
computa-
tion with 
one loop 

Prob. of suc-
cessful com-
putation 

Conditional prob. 
of successful com-
putation 

P45 - 4 
paths 

(1 + 1) x 1 x 1 x 2 24 60 28.5% 28.5% 

P46 - 4 
paths 

4 24 60 28.5% 8.16% 

P47 - 4 
paths 

1 x 1 x 2 x 1 x 2 24 60 28.5% 2.33% 

P61 - 5 
paths 

1 x (1 + 1 + 1 + 2) x 
1 

120 500 19.3% 0.45% 

P62 - 3 
paths 

1 x (1 + 1 + 1) 6 6 50% 0.22% 

P63 - 4 
paths 

1 x (1 + 3) 24 60 28.5% 0.064% 

P65 - 4 
paths 

1 x 4 x 1 24 60 28.5% 0.018% 
 

P66 - 4 
paths 

4 24 60 28.5% 0.0052% 
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P67 - 4 
paths 

4 24 60 28.5% 0.0015% 

P68 - 4 
paths 

4 24 60 28.5% 0.0004% 
 

P69 - 41 
paths 

(1 x 1) + 4 x (2 + 4 + 
4) 

3.34525e+49 2.2083E+51 1.4% 0.0000064% 

P70 - 4 
paths 

4 24 60 28.5% 0.0000018% 

P71 - 41 
paths 

1 x 41 3.34525e+49 2.2083e+51 1.4% 0.00000002% 

P75 - 16 
paths 

2 x 2 x 4 2.09228e+13 4.82395e+14 4.1% 0.0000000011% 

P76 - 16 
paths 

(1 + 1) x 2 x 4 2.09228e+13 4.82395e+14 4.1% 0.000000000047% 

P77 - 16 
paths 

16 2.09228e+13 4.82395e+14 4.1% 0.0000000000019% 

P78 - 16 
paths 

16 2.09228e+13 4.82395e+14 4.1% 0.00000000000008
% 

P79 - 3 
paths 

1 x (1 + 2) x 1 6 6 50% 0.00000000000004
% 

P80 - 8 
paths 

1 x 1 x 2 x 1 (3 + 1) 40320 375368 9.7% 0.000000000000003
2% 

P82 - 10 
paths 

2 x 1 x 3 x 1 + (4 x 
1) 

3628800 46253610 7.2% 0.000000000000000
287% 

P88 - 12 
paths 

1 x 1 x [(1 x 4) + (1 
x 4) + 4] 

479001600 7751595852 5.8% 0.000000000000000
0167% 

P90 - 13 
paths 

1 x 1 x (12 + (1 x 1)) 6227020800 1.11471e+11 5.2% 0.000000000000000
00088% 

P91 - 13 
paths 

1 x (12 + 1) 6227020800 1.11471e+11 5.2% 0.000000000000000
00004% 

P92 - 39 
paths 

(2 + 1) x (12 + 1) 2.03979e+46 1.27643e+48 1.5% 0.000000000000000
0000007% 

P93 - 26 
paths 

1 + 13 + (1 x 1 x 12 
x 1) 

4.03291e+26 1.62279e+28 2.4% 0.000000000000000
00000002% 

 
As Table 4 suggests, two parameters in the analyzed network have 41 settability paths 
each. Repeating the analysis presented above for the Longobardi & Guardiano net-
work (i.e., removing the one-loop restriction, but limiting the path-selection events to 
number of paths), a parameter with 41 settability paths has a total of  n · (n − 1))&' =
	4.95660𝑒 + 65	ways of computation. Subtracting the number of computations that do 
not involve a repetition (Table 4; 3.34525𝑒 + 49), there are 4.95659𝑒 + 65 ways of un-
successful computation, which translates to a 6.7 × 10&'(% probability of (the setta-
bility relations behind) this parameter being successfully computed in the first try. 
Thus, the expected number of unsuccessful computations before a successful one oc-
curs is: 
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𝐸 =
1	 − 	𝑝
𝑝 = 	

1	 − 	0.0000000000000067491
0.0000000000000067491 = 		14816817458844600 

 
Succinctly put, it is expected that more than 14 quadrillion unsuccessful computa-
tions will occur before a successful one takes place.  
 

Discussion 
 

We have presented a previously unanalyzed aspect of the P&P approach that seems 
to entail an unrealistically cumbersome computational burden. We stress here that 
our report does not in principle repudiate the basic notion of parameters as emergent 
points of variation that build on innate principles, but rather the more specific con-
jecture that the infant is presented with an extensive predefined list of such parame-
ters. 
 
Parameters were proposed as a cognitive primitive that help organize and constrain 
the hypothesis space of a child trying to acquire language in an efficient way (Pearl & 
Lidz, 2013). Although the notion of parametric variation is theoretically well-formed 
and useful as a concept, previous research on the computation of parametric models 
of language acquisition has revealed various computability issues. For instance, it was 
found that the child would need to set about 30 parameters per second, throughout 
childhood, to assimilate a parametric model, with obvious consequences about com-
putability (Levelt, 1974; Fitch & Friederici, 2012).  
 
Other work on grammar learning revealed the local maxima problem: a learner may 
posit incorrect hypotheses about the target grammar Gt, forming a grammar Gs from 
which she can never move out, similar to an absorbing state in the theory of Markov 
chains (Gibson & Wexler, 1994). Related to this, the learnability problem refers to the 
fact that even if a path from Gs to Gt exists and there are salient cues that guide the 
learner towards the target, there is a high probability that the learner does not take 
this path, resulting in non-learnability (Niyogi & Berwick, 1996).  
 
The problem of low probability of unambiguous input does not, strictly speaking, raise 
learnability concerns, but it does raise computability issues. According to this prob-
lem, given the scarcity of unambiguous input (i.e., there is no one-to-one correspond-
ence between the surface properties of the input and the correct parameter values 
that generate Gt), the learning algorithm must wait for a sentence that is fully unam-
biguous before forming any Gs, yet these sentences have a very low probability of oc-
curring (Sakas, 2000). Further, the notion of an unambiguous linguistic input also pre-
supposes a robust and complex metacognitive, inferential state for the infant.  
 
All these problems raise concerns that relate to forming hypotheses about a Gt in the 
process of parameter-setting, and not to determining settability. This means that they 
are problems that pertain not to the parametric model itself, but to the interaction 
between the input and the learner, and as such, they can be ameliorated under the 
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right conditions. For example, the local maxima problem can be solved if the learner 
can change more than one parameter setting when encountering input that is not pre-
dicted by Gs (Niyogi & Berwick, 1996). Similarly, the problem of low probability of un-
ambiguous input has been sidestepped by suggesting that some sentences in the input 
function as signatures or unambiguous triggers; that is, they are analyzable only if the 
learner has selected the correct value for a parameter (Fodor, 1998; Yang, 2002). Fo-
cusing on setting relations, the conclusion is that under certain assumptions, param-
eter-setting is computable (Sakas et al., 2017). However, this state of affairs does not 
take into account the computability of settability relations.  
 
Unlike problems of setting, problems of settability are intrinsic to the parametric 
model. To give a concrete example, the fact that one of the parameters analyzed in 
the previous section was found to have 3.96903𝑒 + 55 ways of unsuccessful computa-
tion, even when restricting the possible number of loops to not exceed the number of 
possible path-selection events, is not a problem that the learner can overcome by us-
ing some particular learning strategy instead of another. No matter the strategy, the 
fact will remain that before one finds a way of checking these 36 settability paths with-
out running into a loop, trillions of unsuccessful computations are expected to take 
place. Even under the unrealistic assumption that the child devotes only one second 
to each computation, execution would take 29,637,856,071 hours, or over 3 million 
years. This corresponds to the task of computing the settability relations behind a sin-
gle parameter. It seems highly implausible that this amount of computation is entered 
into the task carried out by the child when acquiring language. To put the number in 
perspective, the discovery of the Ledi jaw that was recently added to the fossil record 
of the genus Homo places the earliest occurrence of recognizable Homo to 2.8 mya 
(Villmoare et al., 2015).  
 
It may, of course, be possible for a deep learning approach to settability to reduce our 
large estimate of unsuccessful computations, in combination with external learning 
heuristics (of the kind we will discuss below). However, to our knowledge no such 
approach has been forthcoming in the literature, and in any event, it would likely 
necessitate a number of complex priors that may simply re-migrate settability diffi-
culties to postulated AI algorithms that may have no cognitively plausible, implemen-
tational correlate (Marcus & Davis, 2021). The burden of proof in this respect lies with 
deep learning (and related) approaches, and we therefore leave this possibility to fu-
ture research, in particular given that our approach here has been explicitly to model 
the computability of settability paths. 
 
The results presented in the previous section demonstrate various problems. First, 
the memoryless parser cannot keep track of all the loops. Even if we endow it with 
this ability, the number of unsuccessful computations that run into a loop is in the 
thousands, and this is the case for parameters that have just 6 settability paths. Re-
stricting the number of loops does not make the task feasible either. Importantly, the 
parameters that were analyzed represent only one domain of grammar: the nominal 
domain. One can imagine how much larger the task would be if more parameters are 
brought into the picture. In addition, setting these non-nominal parameters would 
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also rely on a number of complex, higher-order semantic and conceptual networks, 
whose developmental trajectory remains relatively elusive (Murphy, 2017). Second, 
the results suggest that a parametric approach to Universal Grammar is not feasible. 
Crucially, the results do not provide any kind of evidence against Universal Grammar 
itself, which remains a robust and necessary concept in some frameworks of lan-
guage acquisition. The identified problems arise when one suggests that the gram-
matical relations described as parameters exist in the form of interlocked primitives in 
Universal Grammar. This entails that the results are also not informative about the 
grammatical properties that are described in the analyzed network: The parameters 
in the Longobardi & Guardiano and Ceolin et al. networks are correct in the sense that 
they faithfully represent some differences in the grammars of various languages. 
Both networks, beyond descriptive and typological evidence, are strongly supported 
by their phylogenetically plausible conclusions. Our results are informative about the 
computability of a key characteristic of parametric models: settability. This charac-
teristic is the cornerstone of almost all parametric models of language acquisition, 
because it provides the answer to the logical problem of language acquisition. Param-
eters are meant to be understood as a built-in shortcut that aids acquisition (Pearl & 
Lidz, 2013), but this only happens when they are conceived as interlocked parameters, 
meaning that the setting of one parameter carries implications about the settability 
of others. If parameters were to be understood as millions of unrelated points of var-
iation, the variation space would not be organized in specific ways, hence would not 
be an aid in acquisition. 
 
These results challenge another long-standing assumption of parametric models: the 
instantaneous nature of acquisition. Chomsky introduced this metaphor with the aim 
of talking about an idealized version of development, one that abstracts away from 
specific stages, on the assumption that these stages are largely uniform and have no 
impact on the acquired grammar (Chomsky, 1975). Some research since then has pro-
posed that this idealization can be treated as a viable research avenue for the topic of 
language acquisition (Cinque, 1989; Rizzi, 2000). The problem arises when the ‘instan-
taneous acquisition’ metaphor presupposes a Universal Grammar that is rich enough 
to justify the concept of rapid setting of innate primitives. In other words, the ‘instan-
taneous acquisition’ narrative relies on the existence of a structurally rich Universal 
Grammar that involves detailed parametric networks like the one analyzed here. Even 
if acquisition was instantaneous in the sense that the value of a parameter would be 
determined automatically without any of the parsing reported in acquisition models, 
the settability relations behind the dependent parameters would still need to be com-
puted in a stepwise fashion. Unless a learner can perform some trillions of computa-
tions in an instant, acquisition cannot be viewed as an instantaneous process.  
 
It is also important to note that the obtained results are informative about any given 
parametric model that postulates interlocked parameters. One may think that the 
multiple paths to the settability of a parameter in the two analyzed networks are an 
artifact of these specific networks, such that the settability problem would vanish if 
another network was examined. There are two reasons to believe that the opposite is 
true. First, the grammatical relations behind the parameters in the two networks are 
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correct and their faithful representation of cross-linguistic differences has never 
been challenged. Second, the neat binary branching of Figure 1 is an artifact of 
presentation. More specifically, it is an artifact of choosing some ‘big’ macroparame-
ters and a few languages, oversimplifying and ignoring many intermediate points of 
variation. For example, some languages have both partial polysynthesis and null sub-
jects, which is a combination Figure 1 does not permit. This possibility cannot be cap-
tured without adding more parametric nodes in the hierarchy. Once these nodes are 
added, Figure 1 will resemble the two analyzed networks. Overall, the obtained re-
sults confirm Chomsky’s early disclaimer about instantaneous acquisition. In his 
words, the ‘instantaneous acquisition’ model “is surely false in detail, but can very 
well be accepted as a reasonable first approximation” (Chomsky 1967: 441-442). 
 
In relation to the computability concerns our analyses raise, a reviewer notes that the 
formalization of the cross-parametric implications currently adopted in the networks 
represented in Figures 2 and 6 is not assumed to reproduce or simulate any learning 
process, and it is not based on any consideration concerning the potential computa-
tional effort made by the learner in processing this type of information. Thus, the 
possibility cannot be excluded that a different formalization of the same implicational 
network might produce different outputs that could also affect the settability relations 
we used in our analyses. Although this is true, the parametric inventories we analyzed 
are firmly grounded on solid descriptive, typological, and phylogenetic evidence 
(Crisma et al. 2020, Ceolin et al. 2021). As such, determining their computability is 
important. Naturally, if in future work the implicational network is altered specifi-
cally in order to be made computable/learnable, the observed computability concerns 
will be circumvented. Based on current knowledge, however, the fact remains that 
two examples of our best parametric inventories raise specific computability con-
cerns at their present state of development. 
 
These concerns beg two important questions about the scope of our results. A re-
viewer asks what would go wrong if the learner ignores the implicational network and 
just tries to opportunistically set parameters whenever possible. Relatedly, is it possi-
ble that our results do not raise computability concerns for P&P in general, but for 
one particular instantiation of a P&P model that involves a predefined list of options 
in the initial state of development? The answer to the first question is that the impli-
cational network provides innate shortcuts that aid acquisition. Asking whether the 
learner could ignore it would be tantamount to asking whether we can ignore any 
other innate aspect of our biological make-up. More importantly, however, the 
learner has no reason to ignore it, because this implicational network is the glue that 
keeps together the parametric space. If we remove the glue, the learner is left to nav-
igate an extremely large variation space without any shortcuts. This also answers the 
second question. As mentioned already, our results do not speak about Universal 
Grammar or the principles of P&P, hence it would be wrong to conclude that we cast 
doubt on P&P as a whole. We examined a specific aspect of its parametric component. 
In this context, the answer to the second question is that if we remove the implica-
tional network from the picture, the computability issues we raised may be indeed 
sidestepped. However, this does not entail that we are left with a parametric model 
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that is free from computability concerns. In the absence of implicational relations, 
the learner faces the task of navigating an extremely large space of variation. It has 
been suggested that this large space of variation “brings to light a fatal weakness of 
the microparametric approach” (Huang & Roberts 2016: 321): Even as few as a hun-
dred independent parameters would raise serious concerns about the realization of 
only a very small fragment of the set of possible grammars during the entire human 
history (Huang & Roberts 2016). In a nutshell, removing the implicational network 
from the picture possibly alleviates the computability problems we raised, but makes 
the model vulnerable to other issues. Of course, it is entirely possible that parametric 
models that do not suffer from any type of computability issues are developed in the 
future. At present, the most promising candidates are those that refer to emergent 
parametric hierarchies (Huang & Roberts, 2016; Biberauer, 2019). Once these pro-
posals are developed in sufficient technical detail and mapped to cross-linguistic data, 
future studies that assess their computability will be possible. 
 
Having shown that the process of grammar development does not correspond to fix-
ing values of innate parameters, the question of how the child sets its target grammar 
becomes again relevant. Merging insights from different acquisition models (Yang, 
2002; Chistiansen et al. 2009; Boeckx & Leivada, 2014; Fasanella, 2014; Westergaard, 
2014; Yang et al., 2017; Chomsky, 2019), Figure 7 presents a sequence of seven pro-
cesses that explain how the child extrapolates rules of grammar from the input. The 
aim here is to provide a detailed, biologically plausible account for this task, while 
assuming as few Universal Grammar-/language-specific primitives as possible. Fig-
ure 7 lists the tasks that the efficient learner has to perform in order to arrive at a 
target grammar Gt.  
 
We will briefly describe the principles of computation that aid the learner in each of 
these tasks, as well as their neurobiological basis, effectively presenting the process 
of acquiring a Gt without resorting to postulating parameters. Importantly, we illus-
trate this model not to outline its specific algorithmic architecture, which deviates 
from the central critique and motivation we adopt here. Instead, we provide a general 
outline of an architecture that could feasibly be instantiated in a number of ways.  

 
One crucial factor that unlocks the process of developing a Gt is very early prosodic 
information which helps eliminate logically possible (though unsubstantiated on the 
basis of the input) learning tracks. Therefore, the first step in the process of cracking 
the grammar ‘code’ is input segmentation, whereby the learner breaks a continuous 
acoustic or visuo-motor signal into a sequence of discrete, meaningless symbols that 
make up larger meaningful chunks. In order to go from continuous, unsegmented 
input to discrete elements, the learner must treat the input as meaningful across lev-
els of linguistic analysis (Process 1 in Figure 7). 
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Figure 7. Processes and cognitive cues that are critical in developing a target gram-
mar from the input. 

 
 
One crucial factor that unlocks the process of developing a Gt is very early prosodic 
information which helps eliminate logically possible (though unsubstantiated on the 
basis of the input) learning tracks. Therefore, the first step in the process of cracking 
the grammar ‘code’ is input segmentation, whereby the learner breaks a continuous 
acoustic or visuo-motor signal into a sequence of discrete, meaningless symbols that 
make up larger meaningful chunks. In order to go from continuous, unsegmented 
input to discrete elements, the learner must treat the input as meaningful across lev-
els of linguistic analysis (Process 1 in Figure 7). More concretely, the computation 
progresses from forming statistical observations over phoneme distribution to deci-
phering word edges, segmenting morphemes, and then determining lexical catego-
ries (Christiansen et al., 2009). For spoken languages, the key to this process is the 
entrainment of the auditory cortex to different aspects of handling the acoustic signal, 
such as parsing at the syllabic level and integrating various cues while filtering back-
ground noise (Ding & Simon, 2014; Benítez-Burraco & Murphy, 2019; Murphy, 2015, 
2020). For sign languages, cortical entrainment to the sign envelope is strongest at 
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occipital and parietal regions (Brookshire et al., 2017). After such initial entrainment, 
endogenous neural activity appears to “take over” and generate inferences about ab-
stract structure, which we assume is the point at which grammatically relevant hy-
potheses can be made. This modality-independent stimulus-brain coherence under-
lies the extraction of probabilistic information from the input. Crucially, these pro-
cesses presuppose a capacity to generate specific lexical categories but also a capacity 
to represent particular syntactic features that enter into structure-building opera-
tions; representations that seem unlike any other symbolic units in the primate world. 
In carrying out this process, the learner is initially guided by the Unambiguous Data 
Constraint, which leads them to select and focus on the simplest and cleanest possible 
data, mainly unambiguous matrix clauses (i.e., Process 2 in Figure 7; Lightfoot, 1991, 
2020; Fodor, 1998; Pearl & Weinberg, 2007). This constraint can be viewed as the out-
come of two hallmark tendencies of neural organization: the tendency to chunk long 
sequences and the tendency to organize/compress input in simple ways (Fonollosa et 
al., 2015; Christiansen & Chater, 2016; Chater & Loewenstein, 2016; Al Roumi et al., 
2021). These tendencies are ubiquitous, but differentially manifested in accordance 
with the individual characteristics of spoken and signed phonology (e.g., single-seg-
ment words are rare in spoken languages, but common in sign languages, due to the 
different chunking strategies involved; Brentari, 1998; Emmorey, 2016). Having se-
lected the relevant input, the learner then analyzes it by hypothesizing rules, based 
on saliently accessible morphophonological cues (Process 3; Boeckx & Leivada, 2014; 
Fasanella, 2014). According to the Accessibility Condition, grammatical properties of 
the Gt  are determined by directly inspecting phonological and morphological prop-
erties of utterances (Fasanella, 2014). The speaker/signer analyzes an input chunk 
through hypothesizing a grammar Gi with a probability pi. Depending on whether Gi 
matches the input from Gt, Gi is punished or rewarded by decreasing and increasing 
pi accordingly (Yang, 2002). 
 
Progressively, the learner tackles more complex input, but does so by avoiding over-
generalizations (Process 4). The Subset Principle guides the learner to generalize as 
conservatively as possible (Yang et al., 2017). Concerns that have been raised about 
the computational complexity of the Subset Principle (see Yang, 2016) can be side-
stepped through the postulation of emergent (i.e., not innate) micro-cues. As minimal 
points of syntactic representation, micro-cues anchor the formed hypotheses in nar-
row domains of application, always on the basis of positive evidence (Westergaard, 
2014). This anchoring renders wholesale, computationally costly comparisons of Gi 
and Gt unnecessary; a notion in line with recent developments in derivational syntac-
tic theory (Chomsky, 2019; Murphy & Shim, 2020). Indeed, one of the implications of 
our results is that the initial hypothesizing on the part of the child of a large number 
of conflicting grammars is purely a stipulation from traditional psycholinguistic mod-
els, with no grounding in computability concerns. In a similar way that models of 
syntax no longer typically assume that multiple independent derivational represen-
tations of a specific tree are compared during sentence construction (as in early min-
imalist syntax), so too should language acquisition researchers push computational 
feasibility (and not competition between Gi and Gt) as a primary constraint on model-
ling. 
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Certain generalization tendencies do come into play (e.g., the Input Generalization, a 
computational bias that suggests that there is a preference for a property of a syntactic 
head to generalize to other heads, thus giving rise to harmonic patterns; Huang & 
Roberts, 2016), but they boil down to soft biases that do not translate into extensive 
overgeneralizations in child language. Their status as soft biases is also evidenced by 
the fact that they do not translate to absolute typological universals: Phylogenetic 
modelling has demonstrated that these generalizations are not uniform across lan-
guage families (Dunn et al., 2011). Research into recently emerged sign languages cor-
roborates this conclusion. There is some evidence for harmonic headedness patterns 
in the repertoire of first-generation signers of Al-Sayyid Bedouin Sign Language, but 
variation exists and the preference for one syntactic order over others becomes more 
stable progressively over different generations of signers (Sander et al., 2005).  
 
Once the learner has hypothesized rules, a cognitive principle that minimizes the do-
main of application of these rules comes into the picture (Process 5). Similar to how 
the Subset Principle constrains generalizing across different morphosyntactic envi-
ronments, the Cyclic Principle constrains the domain of application of the hypothe-
sized rules. According to this principle, when one domain to which a rule can apply 
is contained in another, the rule applies first to the smaller domain and then proceeds 
to the wider one (Chomsky, 2019). From a biological perspective, this stepwise cyclical 
application of rules in grammar is concordant with the overall cyclical nature of au-
ditory and visual perception, which has been linked to dynamic oscillatory activity in 
the brain (Ho et al., 2017). In addition, these notions seem amenable to ultimately be-
ing embedded within a framework of mature syntactic computation that calls upon 
demands of workspace construction; general resource restrictions on recursive, Mar-
kovian computations; limiting access to representational search; and related notions 
(Chomsky, 2019). 
 
A key component of many acquisition models concerns the process that enables the 
learner to decide the productivity of a hypothesized rule in light of possible excep-
tions. The learner must perform some calculation that compares a list of candidates 
over which a rule applies and a list of exceptions to the rule (Process 6). The Tolerance 
Principle provides a calculus of the exceptions a learner can tolerate before abandon-
ing a hypothesized rule as unproductive: Assume a rule R is productive over a set of 
items N only when the number of known exceptions e is smaller than the number of 
N divided by the natural log of N (Yang, 2002; Yang et al., 2017). The Tolerance Prin-
ciple can also be shown to resolve the acquisition of English dative constructions, a 
perennial problem in acquisition research (Yang, 2017). 
 
Last, the learner must be able to decide between different productive rules that may 
apply to the same item (Process 7). The Blocking Principle states that when two rules 
are available to realize a set of morphophonological values, the more specific one ap-
plies (Yang 2002). This ability to inactivate general rules in specific cases (e.g., not 
apply the regular rule for past tense formation in irregular verbs) provides the list of 
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exceptions that are necessary in the learner’s effort to calculate the productivity of a 
hypothesized rule. 
 
Overall, the list of processes in Figure 7 consists of some landmark cognitive princi-
ples that are operative in the process of language growth in the individual. Crucially, 
it shifts the focus of research to principles of computation, rather than triggered rep-
resentational primitives. In addition, we have tried to emphasize the limitations on 
assuming models of idealized observers that choose either optimal or near-optimal 
hypotheses from an enormous list of explicitly entertained candidate settings. The 
model does not cover all aspects of acquisition; instead, it has an explicit focus on 
grammar, leaving other domains (e.g., the lexicon, pragmatics) unaddressed. Its 
scope is narrowed since our aim has explicitly been to account specifically for the 
process of cracking the grammar code without assuming innate parameters, in light 
of the computability problems presented above. Importantly, the program that per-
formed the computations presented does not ‘read’ the linguistic properties behind 
the analyzed parameters; it only computes the various permutations between the set-
tability paths behind them. As such, both the program that was used in the analysis 
of settability relations and the synthesis of cognitive principles that come into play in 
language acquisition can be embedded in wider contexts (e.g., by using the program 
to compute settability relations in other parametric models or by expanding the 
model in Figure 7 to include principles that are relevant in the process of lexical learn-
ing), eventually piecing together a more complete and biologically plausible account 
of the language acquisition process. At a minimum, our framework provides a (puta-
tively) computationally tractable, and (seemingly) psychologically plausible scaffold 
around which implementational models can be built. We consider the account briefly 
outlined here to be ripe for future modelling research, in particular with respect to 
how the notion of computational tractability might map onto the development of gen-
eral learning biases and computational principles of efficiency. Future research could 
expand on the list of parameters we have used and make more direct contact with 
models of cognitive and neural development (Crisma et al., 2020; Ceolin et al., 2020; 
2021). 
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Appendixes 
 
import math 
 
def computablePaths(paths): 
 
    return math.factorial(paths) 
 
def notComputablePaths(paths): 
     
    if paths in [0, 1, 2]: 
     
        return 0 
     
    else: 
     
        notCompPath = 0 
     
        for l in range(2, paths + 1): 
     
            temp = 1 
     
            for t in range(0, l - 1): 
     
                temp = temp * (paths - t) 
     
            notCompPath = notCompPath + temp * (l - 2) 
     
        return notCompPath 
 
 
def calculateProbability(compPaths,notCompPaths, paths): 
     
    totalPaths = compPaths + notCompPaths 
     
    probability = float(compPaths / totalPaths) 
     
    print(f"The probability of a successful computation is {probability * 100}%"); 
     
 
def main(): 
     
    finish = 1 
     
    while(finish != 2): 
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        print("-" * 50); 
     
        print("-" * 50 + "\n"); 
     
        paths = int(input("Number of paths: ")) 
 
        compPaths = computablePaths(paths) 
 
        notCompPaths = notComputablePaths(paths) 
 
        print(f"For {paths} paths, there are:\nWays of successful computation: {comp-
Paths}\nWays of unsuccessful computation: {notCompPaths}  \n") 
 
        calculateProbability(compPaths, notCompPaths, paths); 
 
        finish = int(input("\nDo you want to calculate another probability? \n1.Yes  
2.No\n\n")) 
 
        print("\n"); 
         
 
if __name__ == "__main__": 
 
    main() 
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