
 Language Development Research

Volume 2, Issue 1, 31 December 2022

105

A demonstration of the uncomputability of parametric models
of language acquisition and a biologically plausible alternative

Evelina Leivada

Universitat Rovira i Virgili, Spain

Elliot Murphy
University of Texas Health Science Center at Houston, USA

Abstract: The logical problem of language acquisition has been at the forefront of psycholinguistics
and behavioral neuroscience for decades. One of the most influential answers to the problem of how
successful acquisition occurs on the basis of noisy input suggests that the child is aided by innate prin-
ciples and parameters (P&P). These are conceived as part of our biological endowment for language.
Previous work on the computability of parametric models has focused on the process of parameter-
setting, leaving settability unaddressed. Settability is a key notion in parametric models since it pro-
vides an answer to the logical problem of language acquisition: the setting of one parameter carries
implications for the settability of others, minimizing the child’s task. However, a mathematical analy-
sis of the expected probability of successful computation of settability relations has not been carried
out. We report results from a novel program developed to calculate the probability of successful com-
putation of a network of 62 linguistic parameters as attested in 28 languages, spanning across 5 lan-
guage families. The results reveal that some parameters have an extremely low probability of success-
ful computation, such that trillions of unsuccessful computations are expected before a successful set-
ting occurs. Using the same program, we performed an additional analysis on a different network,
covering 94 parameters from 58 languages and 15 language families. In this case, the estimated number
of expected unsuccessful computations rose from trillions to quadrillions. These results raise concerns
about the computational feasibility of the highly influential P&P approach to language development.
Merging insights from various acquisition models, including some developed within P&P, a biologi-
cally plausible alternative is offered for the process of deciphering a target grammar in the acquisition
of both spoken and signed languages. Overall, our analysis of the P&P approach to language acquisition
centers learnability and computability constraints as the major factors for determining the psycholog-
ical plausibility of grammar development.

Keywords: acquisition; computation; learnability; parameter; Universal Grammar

Corresponding author(s): Evelina Leivada, Department of English and German Studies, Universitat
Rovira i Virgili, Av. Catalunya 35, 43002, Tarragona, Spain. Email: evelina.leivada@urv.cat

ORCID ID(s): https://orcid.org/0000-0003-3181-1917, https://orcid.org/0000-0003-1456-0343

Citation: Leivada, E., & Murphy, E. (2022). A demonstration of the uncomputability of parametric mod-
els of language acquisition and a biologically plausible alternative. Language Development Research,
2(1), 105–138. https://doi.org/10.34842/2022-585

 Language Development Research

Volume 2, Issue 1, 31 December 2022

106

Introduction

Language acquisition and its guiding principles have been at the forefront of psycho-
linguistic and developmental research for over five decades. Among the central re-
search questions of the field, the logical problem of language acquisition stands out:
How is language acquired, given the noisy nature of the linguistic input that a child
receives during the early stages of development? The poverty of the environmental
stimulus that characterizes the input sharply contrasts with the richness of the attain-
ment that a neurotypical child will have as a mature speaker/signer (Chomsky, 1965;
1980). In (bio)linguistics and psychology, the highly influential Principles & Parame-
ters framework (P&P) has provided an answer to the logical problem of language ac-
quisition by positing that the child is aided by some innate principles that help them
navigate the space of cross-linguistic variation in the process of acquisition (Chom-
sky, 1981). According to P&P, the child is innately equipped with a cognitive apparatus
called Universal Grammar. Universal Grammar can be viewed as a cognitive map that
consists of (i) a finite number of universal principles and (ii) a small number of pa-
rameters, that are also universal, but come with a set of values to which they are var-
iably set across different languages. Although this idea has been around for several
decades and has been criticized on various grounds, recently there has been a re-
newed interest in it, especially from a computational perspective that integrates Uni-
versal Grammar and non-linguistic principles of computation in the process of lan-
guage development (Yang et al., 2017; Kazakov et al., 2018; Manzini, 2019). Even
though the P&P framework removes some of the burden originally placed on the Eval-
uation Measure, it remains unclear what type of learning algorithm can manoeuvre
itself through a space of grammars.

From a theoretical perspective, this organization of Universal Grammar in terms of
principles and parameters brings an important benefit. Consider the overall volume
of the input data a child has to process in order to acquire their language. Not only is
it vast, but the task at hand entails dealing with noisy data and complex rules, whose
properties the child has to decipher in the earliest stages of development. The logical
problem of language acquisition addresses the question of how the child achieves this
monumental task. The answer, within the P&P framework, is that the child’s cognitive
map consists of a finite number of parameters that form certain paths (Figure 1), such
that the variation space is neatly compartmentalized, rendering the child’s task con-
siderably easier.

To explain the process, at point zero of acquisition the child has routes of the cognitive
map open, but upon setting a few initial parameters to one value instead of another,
the child selects a path. This selection brings with it the notion of settability: The val-
ues of the first-set parameters carry implications about the settability of others that
are yet to be set. After selecting a route through setting a parameter to one value, the
child is bound against exploring other routes, at least not in the context of that lan-
guage. Parameters in these other routes will not be set to a value on the basis of the
data the child is exposed to, because they are not settable: they do not form part of
the route the child has taken. Since the child will never have to deal with them, the

 Language Development Research

Volume 2, Issue 1, 31 December 2022

107

variation space that they have to navigate is substantially reduced. This explains (pu-
tatively) how the child performs this complex task so fast.

Figure	1.	A	parametric	hierarchy	(adapted	from	Baker	2003).		

To define the critical notions of setting and settability, parameter setting refers to se-
lecting a value for a parameter, based on data from the target language. Parameter
settability refers to whether a parameter forms part of the route the learner has taken.
To give an example based on Figure 1, ‘adjective neutralize’ is not settable in French
(i.e., it does not form part of the route to French), but it is settable and set to a specific
value in Mohawk. A settable parameter is always set based on language data. There-
fore, setting differs from settability in that the latter only arises given the existence of
an implicational network among parameters (i.e., a network of dependencies that spec-
ifies that the settability of parameter X depends on having set parameter Y to one
value instead of another, as shown in Figure 1). In this sense, the crucial difference
between the two notions, setting and settability, boils down to the fact that the process
of setting/value selection does not bear upon the existence of an implicational net-
work; the latter is only informative about settability.

The processes of setting and settability are formally presented in (1).

(1a) Setting

 Language Development Research

Volume 2, Issue 1, 31 December 2022

108

Given a parametric hierarchy composed by a series of nodes Ni, where	𝑖 ∈ ℕ,
setting is the process of selecting a binary value 𝑆! = {+𝑁! 	𝑜𝑟 − 𝑁!}. If you get
input z, select a value. If z matches the hypothesized value, set N to this value.
If not, select the other value and set N. Reach state Nvalued.

(1b) Settability

Go to the next node N2. Check whether there is a path that connects N2 to any
previous node (in this example, Nvalued). A path entails a logical expression (e.g.,
N2=(N−)). If there is no path, set N2 following the process described in Setting.
If there is a path, determine its satisfiability. A path is satisfied if the parts of
the logical expression match the values of previously set nodes (e.g., if the log-
ical expression is N2=(N−), then Nvalued must be set to −. If it is not, the path is
not satisfied and settability of N2 cannot be reached on this path). Repeat for
every path that connects N2 to previous nodes. If one (or more than one, but at
least one) path is satisfied, follow the process described in Setting to set N2. If
no path is satisfied, rewrite N2 as N2not-settable.

There are two possible outcomes: N2valued or N2not-settable. Once any of the two is
reached, go to the next node N3 and repeat the process. When all nodes have
reached one of the two states, Nvalued or Nnot-settable, halt the process.

These two notions, setting and settability, have not been investigated to equal de-
grees. Previous work concerning the computation of parametric models of language
acquisition has focused almost exclusively on analyzing setting relations; for exam-
ple, the number of linguistic examples and initial hypotheses that are needed for the
child to set the parameters that correspond to their target language (Gibson & Wexler,
1994; Niyogi & Berwick, 1996). Settability has not been addressed from a computa-
tional perspective, in part because until recently it was largely assumed that there is
only one way of reaching settability for a given parameter in a given language; an
assumption that voids the need for further computation.

To illustrate this assumption, Figure 1 shows that there is a single way to reach the
settability of any parameter in this parametric hierarchy (e.g., ‘adjective neutralize’ is
reached exclusively by setting polysynthesis to [+]). The only work that addresses the
computation of settability relations challenged this assumption of unique settability
(Boeckx & Leivada, 2013), through examining an elaborate network of parameters
from the nominal domain (henceforth, the network, Longobardi & Guardiano, 2009;
Figure 2).

 Language Development Research

Volume 2, Issue 1, 31 December 2022

109

Figure 2. The analyzed network consists of 63 binary parameters from the nominal
domain across 28 languages (adapted from Longobardi & Guardiano, 2009). The first
column presents the parameters and the settability path(s) on which each parameter
is settable. If a settability path is not available in a language, the corresponding pa-
rameter is marked with 0 (e.g., if [5settable] depends on [4−], if the latter is in any
other state, the former is marked with 0, which indicates that the parameter is not
settable in the specific language). ‘,’ means ∧.

The assumption of unique settability was investigated through the use of a program
that calculated whether the settability paths in Figure 2 were satisfied in each lan-
guage-parameter pairing that exists in the network (Boeckx & Leivada, 2013). For ex-
ample, if the network specifies that the settability of parameter (P) 14 is reached on

 Language Development Research

Volume 2, Issue 1, 31 December 2022

110

the basis of setting P7 to + and P12 to −, the settability path would be: [14settable] =
[7+] AND [12−]. The program read these paths in the form of logical expressions and
checked whether they were satisfied in the input it received. The input was the states
of each parameter in each language, as they are shown in the language columns of
Figure 2. Proceeding with the previous example, if in language X, P7 was set to + and
P12 was set to −, the program returned the outcome ‘true’ for [14settable]. If P7 and
P12 were in any other state (i.e., set in the opposite value or not-settable), the program
returned the outcome ‘false’, which means that P14 is not settable (on this settability
path) for language X.

As the ‘OR’ nodes in the first column of Figure 2 suggest, the network makes available
different paths for the settability of many of its parameters. Until the computation of
the settability relations of every language-parameter pairing, it was unclear whether
different settability paths existed for different languages or whether the same lan-
guage could involve more than one path for the same parameter; something that
would disprove the assumption of unique settability. Previous work on the computa-
tion of settability relations determined that there are different ways to reach settabil-
ity of a parameter, not only across but also within languages (Boeckx & Leivada, 2013).
For example, Table 1 shows that for many languages in the network, parameter 29 is
not settable (e.g., It[alian] in the second column). For other languages, the parameter
is settable in one (e.g., path 4 in Rom[anian]) or more ways (e.g., paths 3 and 4 in
Ba[sque])

Table 1. Parameter 29: ± Postpositional Genitive. 1 signals the availability of the cor-
responding settability path in the relevant language, whereas 0 signals the unavaila-
bility of the path. When a number node in the first column has an attached parenthesis
on its right (e.g., 2+(1+)), the node inside the parenthesis is the settability path of the
node outside the parenthesis, until an independent parameter is reached. In this table,
the settability of parameter 29 is possible on the basis of setting either 27 to + or 28 to
+. Both 27 and 28 are dependent parameters, settable in two ways each, either
through setting 25 to + or 26 to −. Parameter 25 is an independent parameter which
means that its settability does not depend on the setting of other parameters (Boeckx
& Leivada, 2013).

4 Paths

It Sa
l

Sp

Fr

Pt
g

Ro
m

La

t
Cl

G
NT

G
Gr

i
Gr

k
Go

t
OE

E D No

r
Bl

g
SC

Ru

s
Ir

W

el

He
b

Ar

W
o

Hu

Fi
n

Hi

Ba

27+(25+) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0
28+(25+) 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 0 0 0 0 0
27+(26-
(25-))

0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 1 1 0 0 0 0 1 0 1 1 1

28+(26-
(25-))

0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

However, there is a crucial and thus far unproven assumption behind previous work
on the computation of settability relations. The program that was used in Boeckx &

 Language Development Research

Volume 2, Issue 1, 31 December 2022

111

Leivada (2013) was a semi-automatic one: the settability paths were not computed by
it, but were given to it as predefined logical expressions. The crucial assumption is
that the processing system, be it the human cognitive parser or a custom-made pro-
gram that simulates the process of computation, can successfully compute more than
one settability path for a single parameter. If the settability of a parameter can be
determined in more than one way, the parser must engage in some kind of computa-
tion that exhaustively checks all the paths that lead to it in order to determine whether
the parameter is settable. This happens because the process of determining settability
is a necessary prerequisite for the process of parameter-setting. Given that (i) not all
parameters are settable in all languages and (ii) the learner does not know a priori
which parameters are not, because the settability paths become available progres-
sively, depending on the value of earlier set parameters, the learner must engage in
some kind of computation that determines whether the parameter that it encounters
next in the hierarchy is settable or not.

The aim of the present work is to spell out the computation of settability relations,
locally for each dependent parameter of the analyzed network. More specifically, by
means of treating each settability path as a logical expression (examples (2)-(3)), the
satisfiability of each path must be calculated by the parser, be it the human brain or,
in this case, a program that will simulate the computational process. In terms of the
parametric network that will be analyzed, the notion of satisfiability refers to whether
a path involves parameter values that match the input (given in Figure 2), such that
this path is available in a language-parameter pairing, making the parameter settable
in the specific language.

(2) The logical expression for the second settability path of P10: (5−) 	∧ 	(2+) 	∧ 	(1+)

(3) The logical expression for all the paths of P10: ((5−) 	∧ 	(2+) 	∧ 	(1+)) 	∨ 	((6−) 	∧
	(5+) 	∧ 	(2+) 	∧ 	(1+)) 	∨ 	(7+)

The computation that follows operates on the basis of two important characteristics
of the network and the learner respectively. First, if a parameter involves more than
one settability path, the computation does not halt after finding a satisfiable path for
a parameter. Instead, all paths need to be checked for satisfiability. In order to under-
stand this characteristic, it is necessary to take into account that a parameter’s setta-
bility paths often materialize at different times. For example, Table 2 shows that for
P24, the first path becomes available after P21 is set to +, while the second path ma-
terializes after P22 is set to +. Even if the availability of a path for P24 was to be
checked when [21+] was achieved, the computation would need to be re-run when
[22+] was achieved, because not all languages set P24 on the first path (e.g., Ba in table
2).

Table 2. Parameter 24: ± Count-Checking N. 1 signals the availability of the corre-
sponding settability path in the relevant language, whereas 0 signals the unavailabil-
ity of the path. ‘,’ means ∧ (Boeckx & Leivada, 2013).

 Language Development Research

Volume 2, Issue 1, 31 December 2022

112

4 Paths
It Sa

l
Sp

Fr

Pt

g
Ru

m

La
t

Cl
G

NT
G

Gr
i

Gr
k

Go
t

OE

E D No
r

Bl
g

SC

Ru
s

Ir

W
el

He

b
Ar

W

o
Hu

Fi

n
Hi

Ba

21+ 0 1 1 0 1 0
22+(7+,
21-)

1 1 1 1 1 1 0 0 0 1 1 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0

22+((5-
(2+(1+))
), 21-)

0 1

22+((6-
(5+(2+(1
+)))),
21-)

0 0 0 1 0

The second important characteristic is that the learner cannot remember the para-
metric nodes that formed part of a previously checked path and reuse this infor-
mation when checking paths that materialize later. For example, the last two paths of
P24 in Table 2 share some parameters. Still, the satisfiability of the logical expression
needs to be checked for the last path too. The reason has to do with memory limita-
tions. Even setting aside interference concerns that arise from keeping track of paths
that materialize at different points (hence are separated by the setting of other param-
eters that occurs in between their materialization), working memory has a capacity
of maintaining four units, on average (Cowan, 2000). A set of three parametric nodes
and their values already exceeds this capacity, and most paths are considerably
longer than this.

Not only is this information not retainable in memory due to its heavy load, but the
parser does not have memory that goes beyond the current state. Parametric models
in language acquisition have long been described as involving memoryless pro-
cessing, in the sense that at any step the learner has no recall of prior input or states,
beyond the ones currently entertained (Page, 2004; Fodor & Sakas, 2005; Fodor, 2009).
This memoryless character of the learning process has also been a crucial assumption
in prior work on the computation of setting relations in parametric models (Niyogi &
Berwick, 1996; 1997). We stress that while aspects of contemporary neuroscience sup-
port a view of the brain’s memory as being capable of a pushdown stack (beyond de-
terministic pushdown automata), the mature state of a mildly context-sensitive gram-
mar would presumably not be attainable immediately to the infant (Gallistel & King,
2009). This means that when the learner deals with the settability of P24 (Table 2), it
cannot shorten its last three paths through rewriting P22 as settable/non-settable (i.e.,
it will not remember whether P22 was or was not settable in a language and replace
the paths that determine its settability with this information), because it lacks the
read/write memory of a Turing machine. Put differently, the four paths of P24 that
are shown in Table 2 cannot be rewritten as two paths, 21+ and 22+, by means of

 Language Development Research

Volume 2, Issue 1, 31 December 2022

113

collapsing the different ways of reaching the settability of the latter. Additionally,
such a move, apart from clashing with standard assumptions about properties of the
brain, would raise empirical concerns. For example, Table 2 shows that French sets
this parameter on two paths that depend on two different ways of reaching the setta-
bility of P22 (i.e., paths 2 and 4). Collapsing these two into one would simply not cap-
ture the facts for this language.

Taking into account these two characteristics, the present work aims to determine the
computability of the settability paths behind the parameters of the analyzed network,
through calculating the probability of running into loops that impede halting. For the
computation to be successful, the learner needs to check the satisfiability of all the
settability paths behind a parameter and halt. For example, if a parameter involves
only two settability paths, A and B, further computation is not necessary, because the
parser keeps track of the current state and will proceed to the next path without run-
ning into a loop: after checking both paths in one of the two possible orders, AB or
BA, the computation will halt successfully. We can thus say that a parameter that has
two settability paths has two ways of computation (i.e., two ways or orders of parsing
the set of two paths): AB and BA. However, as the number of paths grows, the number
of ways a set of paths can be checked for satisfiability also grows: two paths have two
possible ways of computation (AB or BA), three paths have six ways (ABC, ACB, BAC,
BCA, CAB, CBA), etc. In order to determine to what degree the ways of computation
grow in the parametric network under examination, the program we describe below
was designed to automatically calculate the probability of successful computation for
each dependent parameter of the network, by estimating the ratio of successful com-
putation to unsuccessful computation. The former refers to the number of ways the
entire set of paths behind a parameter can be computed (i.e., checked for satisfiabil-
ity) without running into loops; the latter refers to the number of ways that it runs
into a single loop.

Method

The Longobardi & Guardiano network (Figure 2) consists of 63 parameters in 23 con-
temporary and 5 ancient languages, mostly from the Indo-European family. It is one
of the most detailed parametric networks in the literature, rendering it an ideal can-
didate for computing settability relations. The present analysis used the slightly
amended version of the network that was presented in previous work on the comput-
ability of parametric relations (Boeckx & Leivada 2013), in which parameter 62 was
eliminated due to errors in its formulation. This elimination reduces the total number
of the discussed parameters from 63 to 62. From these 62 parameters, 21 are settable
on more than two paths, and hence these are the parameters analyzed in the present
work.

In order to calculate the number of possible ways of successful computation (i.e., no
loop), for n number of paths, 𝑛! = 𝑛 · (𝑛 − 1) · (𝑛 − 2) · … · 2 · 1. For example, if n = 3,
in the first random selection of a path, there are three options to choose from. In the
second selection, there are n−1 options, and in the third selection, there are n−2

 Language Development Research

Volume 2, Issue 1, 31 December 2022

114

options, since no repetitions are permitted in successful computation. Therefore, for
𝑛	 = 	3, there are 3	 · 2	 · 1	 = 6 ways of computation that do not run into a loop.

Calculating the ways of computation that feature a loop (i.e., one repetition of a pre-
viously checked path), in the first and the second random selection of a path, there
cannot exist any repetition: in the first one, there is nothing to be repeated, and in the
second one, the first selection will be remembered as the current path from which
the learner is moving. From the third random selection of a path onwards, the total
number of ways of unsuccessful computation is the sum of the different ways of un-
successful computation when we take a subset k of n. The formula to calculate this is
the following:

=n · (n − 1) · … · ?n − (k − 2)A · (k − 2)
"#$

"#%

For example, if a parameter has 5 settability paths (𝑛	 = 	5), for 𝑘	 = 	1 and 𝑘	 = 	2,
there cannot be any repetitions. For 𝑘 = 3, where 3 is the third random selection of a
path, the number of ways of computation without repetition is 𝑛 · (𝑛– 1) 	= 	5 ·
(5– 1) 	= 	20. In order to calculate the number of ways of computation that feature a
repetition in this third selection, this number must be multiplied by the number of
paths that can be repeated. This is 𝑘– 2 because the learner keeps track of the current
state, so it cannot repeat the path it last checked. Therefore, for the third selection,
(𝑘– 2) · 20 gives a total of 20. For 𝑘	 = 	4, the possible ways of computation without
repetition are 𝑛 · (𝑛– 1) · (𝑛– 2) 	= 	5	 · 	4	 · 	3	 = 	60. This is multiplied by the number
of paths that can be repeated, which is 𝑘– 2 = 2, thus for 𝑘	 = 	4, the number of ways
of computation that have a repetition is 60	 · 	2	 = 	120. For 𝑘	 = 	5, the possible ways
of computation without repetition are 𝑛 · (𝑛– 1) · (𝑛– 2) · (𝑛– 3) 	= 	120. This is multi-
plied by the number of paths that can be repeated, which is 𝑘– 2	 = 	3, so for 𝑘	 = 	5,
the total number of ways of computation with repetition is 120	 · 	3	 = 	360. Overall,
the total number of ways of unsuccessful computation for 𝑛	 = 	5 is 360	 + 	120	 +
	20	 = 	500.

For 𝑛	 = 	5, the number of possible computations with and without loops is small,
hence easy to calculate. However, many of the parameters in the analyzed network
involve more than 10 paths. For this reason, a program was developed in Python in
order to carry out the computation automatically (see Appendix for code). The pro-
gram asks the user to provide the number of paths that should be computed. Upon
being given a number followed by ‘enter’, it performs the calculation and asks the
user whether they wish to perform another calculation for a different number of
paths. Pressing ‘1’ and then ‘enter’ restarts the process for another calculation, while
pressing ‘2’ and ‘enter’ closes the program. The program can be used to perform these
calculations for any parametric model.

 Language Development Research

Volume 2, Issue 1, 31 December 2022

115

Results

The analysis produced two results: (i) the number of ways of successful and unsuc-
cessful computation and (ii) the probability of successful computation for each pa-
rameter. Computation here refers not to the process of parameter-setting, but rather
to going through the settability paths behind each parameter by means of checking
the satisfiability of the logical expressions behind the paths ((2)-(3)). As noted, Figure
2 shows the Longobardi & Guardiano network. However, it provides no information
as to how many paths the learner has to go through in order to determine settability
and how many ways of computation (i.e., the process of “going through the set of
paths”) exist. Figure 3 addresses this gap by showing the degree to which the numbers
for successful and unsuccessful computation rise in relation to the number of paths.
More specifically, the average number of paths for the analyzed parameters is 8. For
𝑛	 = 	8, there are 40,320 ways of successful computation and 375,368 ways of unsuc-
cessful computation. This means that when a parameter has 8 settability paths, the
memoryless parsing process has a total of 415,688 ways of going through them in or-
der to check their satisfiability. For 10 paths, the number rises to 3,628,800 ways of
successful computation and 46,253,610 ways of unsuccessful computation, while for
12 paths, the equivalent numbers are 6,227,020,800 and 1.11471e+11.

Figure 3. Number of ways of successful and unsuccessful computation across paths.

 Language Development Research

Volume 2, Issue 1, 31 December 2022

116

Focusing on the Longobardi & Guardiano network, Figure 4 shows the ways of suc-
cessful and unsuccessful computation for the parameters that have 3 or more setta-
bility paths. With the exception of the parameters that have just 3 paths, for all other
parameters, the number of computations that run into a loop is considerably higher
than the number of successful computations.

Figure 4. Number of ways of successful and unsuccessful computation for the 21 pa-
rameters of the analyzed network.

 Language Development Research

Volume 2, Issue 1, 31 December 2022

117

The analyzed parameters involve a total of 169 settability paths. The probability of
successful computation for each parameter independently is given in Figure 5.

Figure 5. Probability of successful computation for the 21 parameters of the analyzed
network with each parameter treated as independent.

If a parameter has 3 or more settability paths, the probability of successful computa-
tion is equal or lower than 50%, respectively. However, the analyzed parameters are
dependent parameters: their settability depends on having set other parameters to one
value instead of another. As Figure 4 shows, in the Longobardi & Guardiano network,
the first parameter that has 3 paths is P10. For 3 paths, the probability of successful
computation on the first try is 50%. The second parameter that has 3 paths is P11. If
this is taken as an independent event, the probability of successful computation is
again 50%. However, if one wants to calculate the probability of a second successful
computation under the assumption that the first parameter was computed success-
fully in one try, the conditional probability of successful computation in this second
step is 25%. Table 3 shows that by the time the fifth parameter with 3 or more paths
is encountered, the conditional probability of successful computation is 1.7%.

Table 3. Conditional probability of successful computation in one attempt (Longo-
bardi & Guardiano network).

Parameter Ways of computa-
tion without loop

Ways of computa-
tion with one loop

Conditional proba-
bility of successful
computation

P10 - 3 paths 6 6 50%

 Language Development Research

Volume 2, Issue 1, 31 December 2022

118

P11 - 3 paths 6 6 25%
P22 - 3 paths 6 6 12.5%
P23 - 3 paths 6 6 6.25%
P24 - 4 paths 24 60 1.7856%
P29 - 4 paths 24 60 0.5101%
P40 - 3 paths 6 6 0.2550%
P44 - 3 paths 6 6 0.1275%
P45 - 6 paths 720 4230 0.01858%
P46 - 6 paths 720 4230 0.00269%
P47 - 6 paths 720 4230 0.00039%
P48 - 6 paths 720 4230 0.000057%
P49 - 7 paths 5040 38262 0.00000662%
P50 - 3 paths 6 6 0.00000331%
P55 - 3 paths 6 6 0.00000165%
P56 - 15 paths 1.30767e+12 2.79027e+13 0.0000000740%
P57 - 4 paths 24 60 0.0000000211%
P58 - 16 paths 2.09228e+13 4.82395e+14 0.000000000878%
P60 - 23 paths 2.5852e+22 9.0699e+23 0.0000000000243%
P61 - 12 paths 479001600 7751595852 0.00000000000141%
P62 - 36 paths 3.71993e+41 2.13604e+43 0.00000000000002%

These findings raise concerns about computability, even if one assumes that

the learner can somehow keep track of the fact that they have run into a loop, hence
know that the computation should be re-run. This is highly pertinent in the context
of a memoryless parsing process that knows only the current state. To explain the
process from the learner’s perspective, if on the first random selection of a path, A is
chosen out of a set of paths ABCD, when the repetition of A occurs in the fourth selec-
tion (i.e., ABCA), the computation runs into a loop. Of course, the program that sim-
ulates the process keeps track of this possibility and flags it as a loop, because it was
designed to do so. Yet the learner, who is equipped with a memoryless parser that
lacks this feature, has no way of remembering which option was selected in the
first/nth random selection of a path. If the learner keeps track of the current state,
ABCC can be recognized as a loop and be avoided, but ABCA cannot. In other words,
the parser is oblivious to the fact that it runs into a loop more often than not.

Even if we endow the parser with the ability to recognize a loop and rerun the
computation, concerns about computability are not sidestepped. The reason boils
down to how the numbers of successful and unsuccessful computations were calcu-
lated above. It is important to stress that the developed program treats the presence
of a single loop as an instance of unsuccessful computation. This means that if a pa-
rameter is settable on 4 paths ABCD, the order ABCA is a possible outcome that the
program counts as unsuccessful, but ABCAB or ABAB are not possible outcomes for
the program. Put another way, the program is purposely designed to count the event
of falling into one single loop as the only case of unsuccessful computation, but in
reality, the number of computations that involve a loop are infinite.

 Language Development Research

Volume 2, Issue 1, 31 December 2022

119

Restricting the possible number of unsuccessful computations by limiting the
number of the random selection of paths to the number of paths (i.e., if a parameter
has 4 paths ABCD, the learner is allowed to perform only 4 events of random path
selections, enabling ABAB as an unsuccessful outcome, but not ABABA, thereby lim-
iting the number of unsuccessful computations) does not alleviate concerns about
computability. Under this limitation, a parameter with 36 settability paths has a total
of 	𝑛 · (𝑛 − 1)$&' = 36 · 35%(= 3.97𝑒 + 55 ways of computation. Consider the compu-
tations that do not involve a repetition (Table 3; 3.71993𝑒 + 41). There are 3.96903𝑒 +
55 ways of unsuccessful computation, which translates to a 9.3 × 10&'%%	 probability
of (the settability relations behind) this parameter being successfully computed in the
first try. If a parameter has this probability of successful computation, the expected
number of unsuccessful computations before a successful one occurs is:

𝐸 =
1	 − 	𝑝
𝑝 = 	

1	 − 	0.0000000000009372397825
0.0000000000009372397825 = 1.06696𝑒 + 14

In other words, it is expected that more than 106 trillion unsuccessful computations
will occur before a successful computation takes place.

To put the obtained results in comparison, we performed a second analysis using a
different pool of data. Ceolin et al. (2021) present an expanded network that consists
of 94 parameters from the nominal domain, covering 58 languages from 15 language
families (Figure 6).

 Language Development Research

Volume 2, Issue 1, 31 December 2022

120

Figure 6. The Ceolin et al. network consists of 94 parameters from the nominal do-
main across 58 languages (Ceolin et al., 2021). The column ‘Implication(s)’ presents
the settability path(s) on which each parameter is settable.1

1 For the purposes of our analysis, part of the logical expression behind the last parameter (i.e., FVP)
was changed from FAG to FGA, following personal communication with Cristina Guardiano.

 Language Development Research

Volume 2, Issue 1, 31 December 2022

121

This network involves 82 dependent parameters, the settability of which de-
pends on the setting of other parameters. Of these, 25 parameters are settable on 3 or
more paths, and these are the ones we analyzed. Specifically, we converted the de-
pendencies given in the ‘Implication(s)’ column (Figure 6) into mathematical expres-
sions in the following way. If a dependency involves two parameters linked by ‘,’ (i.e.,
∧), both parameters must form part of every settability path behind this parameter,
such that following Boolean logic this was expressed as a multiplication. If a depend-
ency involves two parameters linked by ‘OR’ (i.e., ∨), each of the two parameters cor-
responds to a different way of reaching settability, so this was expressed as an addi-
tion. Example (4) illustrates the mathematical expression of a hypothetical example
that has a structure that is found in the analyzed network (i.e., parameter 20, label:
NWD, Figure 6).

(4) Parameter A = +B, +C or -D ⇔ 1 x (1+1) = 2 paths

In (4), the assumption is that parameters B, C, and D involve one settability path each.
When this is not the case, the number of paths behind each parameter must be en-
tered.
 Table 4 presents the results of the mathematical expression of the relevant pa-
rameters in terms of settability paths as well as their probability of successful compu-
tation. For the latter, the Python program was used to perform the calculations.

Table 4. Dependent parameters with 3 or more settability paths and their (condi-
tional) probability of successful computation (Ceolin et al. network).

Parame-
ter

Mathematical ex-
pression of the
dependencies

Ways of
computa-
tion with-
out loop

Ways of
computa-
tion with
one loop

Prob. of suc-
cessful com-
putation

Conditional prob.
of successful com-
putation

P45 - 4
paths

(1 + 1) x 1 x 1 x 2 24 60 28.5% 28.5%

P46 - 4
paths

4 24 60 28.5% 8.16%

P47 - 4
paths

1 x 1 x 2 x 1 x 2 24 60 28.5% 2.33%

P61 - 5
paths

1 x (1 + 1 + 1 + 2) x
1

120 500 19.3% 0.45%

P62 - 3
paths

1 x (1 + 1 + 1) 6 6 50% 0.22%

P63 - 4
paths

1 x (1 + 3) 24 60 28.5% 0.064%

P65 - 4
paths

1 x 4 x 1 24 60 28.5% 0.018%

P66 - 4
paths

4 24 60 28.5% 0.0052%

 Language Development Research

Volume 2, Issue 1, 31 December 2022

122

P67 - 4
paths

4 24 60 28.5% 0.0015%

P68 - 4
paths

4 24 60 28.5% 0.0004%

P69 - 41
paths

(1 x 1) + 4 x (2 + 4 +
4)

3.34525e+49 2.2083E+51 1.4% 0.0000064%

P70 - 4
paths

4 24 60 28.5% 0.0000018%

P71 - 41
paths

1 x 41 3.34525e+49 2.2083e+51 1.4% 0.00000002%

P75 - 16
paths

2 x 2 x 4 2.09228e+13 4.82395e+14 4.1% 0.0000000011%

P76 - 16
paths

(1 + 1) x 2 x 4 2.09228e+13 4.82395e+14 4.1% 0.000000000047%

P77 - 16
paths

16 2.09228e+13 4.82395e+14 4.1% 0.0000000000019%

P78 - 16
paths

16 2.09228e+13 4.82395e+14 4.1% 0.00000000000008
%

P79 - 3
paths

1 x (1 + 2) x 1 6 6 50% 0.00000000000004
%

P80 - 8
paths

1 x 1 x 2 x 1 (3 + 1) 40320 375368 9.7% 0.000000000000003
2%

P82 - 10
paths

2 x 1 x 3 x 1 + (4 x
1)

3628800 46253610 7.2% 0.000000000000000
287%

P88 - 12
paths

1 x 1 x [(1 x 4) + (1
x 4) + 4]

479001600 7751595852 5.8% 0.000000000000000
0167%

P90 - 13
paths

1 x 1 x (12 + (1 x 1)) 6227020800 1.11471e+11 5.2% 0.000000000000000
00088%

P91 - 13
paths

1 x (12 + 1) 6227020800 1.11471e+11 5.2% 0.000000000000000
00004%

P92 - 39
paths

(2 + 1) x (12 + 1) 2.03979e+46 1.27643e+48 1.5% 0.000000000000000
0000007%

P93 - 26
paths

1 + 13 + (1 x 1 x 12
x 1)

4.03291e+26 1.62279e+28 2.4% 0.000000000000000
00000002%

As Table 4 suggests, two parameters in the analyzed network have 41 settability paths
each. Repeating the analysis presented above for the Longobardi & Guardiano net-
work (i.e., removing the one-loop restriction, but limiting the path-selection events to
number of paths), a parameter with 41 settability paths has a total of n · (n − 1))&' =
	4.95660𝑒 + 65	ways of computation. Subtracting the number of computations that do
not involve a repetition (Table 4; 3.34525𝑒 + 49), there are 4.95659𝑒 + 65 ways of un-
successful computation, which translates to a 6.7 × 10&'(% probability of (the setta-
bility relations behind) this parameter being successfully computed in the first try.
Thus, the expected number of unsuccessful computations before a successful one oc-
curs is:

 Language Development Research

Volume 2, Issue 1, 31 December 2022

123

𝐸 =
1	 − 	𝑝
𝑝 = 	

1	 − 	0.0000000000000067491
0.0000000000000067491 = 		14816817458844600

Succinctly put, it is expected that more than 14 quadrillion unsuccessful computa-
tions will occur before a successful one takes place.

Discussion

We have presented a previously unanalyzed aspect of the P&P approach that seems
to entail an unrealistically cumbersome computational burden. We stress here that
our report does not in principle repudiate the basic notion of parameters as emergent
points of variation that build on innate principles, but rather the more specific con-
jecture that the infant is presented with an extensive predefined list of such parame-
ters.

Parameters were proposed as a cognitive primitive that help organize and constrain
the hypothesis space of a child trying to acquire language in an efficient way (Pearl &
Lidz, 2013). Although the notion of parametric variation is theoretically well-formed
and useful as a concept, previous research on the computation of parametric models
of language acquisition has revealed various computability issues. For instance, it was
found that the child would need to set about 30 parameters per second, throughout
childhood, to assimilate a parametric model, with obvious consequences about com-
putability (Levelt, 1974; Fitch & Friederici, 2012).

Other work on grammar learning revealed the local maxima problem: a learner may
posit incorrect hypotheses about the target grammar Gt, forming a grammar Gs from
which she can never move out, similar to an absorbing state in the theory of Markov
chains (Gibson & Wexler, 1994). Related to this, the learnability problem refers to the
fact that even if a path from Gs to Gt exists and there are salient cues that guide the
learner towards the target, there is a high probability that the learner does not take
this path, resulting in non-learnability (Niyogi & Berwick, 1996).

The problem of low probability of unambiguous input does not, strictly speaking, raise
learnability concerns, but it does raise computability issues. According to this prob-
lem, given the scarcity of unambiguous input (i.e., there is no one-to-one correspond-
ence between the surface properties of the input and the correct parameter values
that generate Gt), the learning algorithm must wait for a sentence that is fully unam-
biguous before forming any Gs, yet these sentences have a very low probability of oc-
curring (Sakas, 2000). Further, the notion of an unambiguous linguistic input also pre-
supposes a robust and complex metacognitive, inferential state for the infant.

All these problems raise concerns that relate to forming hypotheses about a Gt in the
process of parameter-setting, and not to determining settability. This means that they
are problems that pertain not to the parametric model itself, but to the interaction
between the input and the learner, and as such, they can be ameliorated under the

 Language Development Research

Volume 2, Issue 1, 31 December 2022

124

right conditions. For example, the local maxima problem can be solved if the learner
can change more than one parameter setting when encountering input that is not pre-
dicted by Gs (Niyogi & Berwick, 1996). Similarly, the problem of low probability of un-
ambiguous input has been sidestepped by suggesting that some sentences in the input
function as signatures or unambiguous triggers; that is, they are analyzable only if the
learner has selected the correct value for a parameter (Fodor, 1998; Yang, 2002). Fo-
cusing on setting relations, the conclusion is that under certain assumptions, param-
eter-setting is computable (Sakas et al., 2017). However, this state of affairs does not
take into account the computability of settability relations.

Unlike problems of setting, problems of settability are intrinsic to the parametric
model. To give a concrete example, the fact that one of the parameters analyzed in
the previous section was found to have 3.96903𝑒 + 55 ways of unsuccessful computa-
tion, even when restricting the possible number of loops to not exceed the number of
possible path-selection events, is not a problem that the learner can overcome by us-
ing some particular learning strategy instead of another. No matter the strategy, the
fact will remain that before one finds a way of checking these 36 settability paths with-
out running into a loop, trillions of unsuccessful computations are expected to take
place. Even under the unrealistic assumption that the child devotes only one second
to each computation, execution would take 29,637,856,071 hours, or over 3 million
years. This corresponds to the task of computing the settability relations behind a sin-
gle parameter. It seems highly implausible that this amount of computation is entered
into the task carried out by the child when acquiring language. To put the number in
perspective, the discovery of the Ledi jaw that was recently added to the fossil record
of the genus Homo places the earliest occurrence of recognizable Homo to 2.8 mya
(Villmoare et al., 2015).

It may, of course, be possible for a deep learning approach to settability to reduce our
large estimate of unsuccessful computations, in combination with external learning
heuristics (of the kind we will discuss below). However, to our knowledge no such
approach has been forthcoming in the literature, and in any event, it would likely
necessitate a number of complex priors that may simply re-migrate settability diffi-
culties to postulated AI algorithms that may have no cognitively plausible, implemen-
tational correlate (Marcus & Davis, 2021). The burden of proof in this respect lies with
deep learning (and related) approaches, and we therefore leave this possibility to fu-
ture research, in particular given that our approach here has been explicitly to model
the computability of settability paths.

The results presented in the previous section demonstrate various problems. First,
the memoryless parser cannot keep track of all the loops. Even if we endow it with
this ability, the number of unsuccessful computations that run into a loop is in the
thousands, and this is the case for parameters that have just 6 settability paths. Re-
stricting the number of loops does not make the task feasible either. Importantly, the
parameters that were analyzed represent only one domain of grammar: the nominal
domain. One can imagine how much larger the task would be if more parameters are
brought into the picture. In addition, setting these non-nominal parameters would

 Language Development Research

Volume 2, Issue 1, 31 December 2022

125

also rely on a number of complex, higher-order semantic and conceptual networks,
whose developmental trajectory remains relatively elusive (Murphy, 2017). Second,
the results suggest that a parametric approach to Universal Grammar is not feasible.
Crucially, the results do not provide any kind of evidence against Universal Grammar
itself, which remains a robust and necessary concept in some frameworks of lan-
guage acquisition. The identified problems arise when one suggests that the gram-
matical relations described as parameters exist in the form of interlocked primitives in
Universal Grammar. This entails that the results are also not informative about the
grammatical properties that are described in the analyzed network: The parameters
in the Longobardi & Guardiano and Ceolin et al. networks are correct in the sense that
they faithfully represent some differences in the grammars of various languages.
Both networks, beyond descriptive and typological evidence, are strongly supported
by their phylogenetically plausible conclusions. Our results are informative about the
computability of a key characteristic of parametric models: settability. This charac-
teristic is the cornerstone of almost all parametric models of language acquisition,
because it provides the answer to the logical problem of language acquisition. Param-
eters are meant to be understood as a built-in shortcut that aids acquisition (Pearl &
Lidz, 2013), but this only happens when they are conceived as interlocked parameters,
meaning that the setting of one parameter carries implications about the settability
of others. If parameters were to be understood as millions of unrelated points of var-
iation, the variation space would not be organized in specific ways, hence would not
be an aid in acquisition.

These results challenge another long-standing assumption of parametric models: the
instantaneous nature of acquisition. Chomsky introduced this metaphor with the aim
of talking about an idealized version of development, one that abstracts away from
specific stages, on the assumption that these stages are largely uniform and have no
impact on the acquired grammar (Chomsky, 1975). Some research since then has pro-
posed that this idealization can be treated as a viable research avenue for the topic of
language acquisition (Cinque, 1989; Rizzi, 2000). The problem arises when the ‘instan-
taneous acquisition’ metaphor presupposes a Universal Grammar that is rich enough
to justify the concept of rapid setting of innate primitives. In other words, the ‘instan-
taneous acquisition’ narrative relies on the existence of a structurally rich Universal
Grammar that involves detailed parametric networks like the one analyzed here. Even
if acquisition was instantaneous in the sense that the value of a parameter would be
determined automatically without any of the parsing reported in acquisition models,
the settability relations behind the dependent parameters would still need to be com-
puted in a stepwise fashion. Unless a learner can perform some trillions of computa-
tions in an instant, acquisition cannot be viewed as an instantaneous process.

It is also important to note that the obtained results are informative about any given
parametric model that postulates interlocked parameters. One may think that the
multiple paths to the settability of a parameter in the two analyzed networks are an
artifact of these specific networks, such that the settability problem would vanish if
another network was examined. There are two reasons to believe that the opposite is
true. First, the grammatical relations behind the parameters in the two networks are

 Language Development Research

Volume 2, Issue 1, 31 December 2022

126

correct and their faithful representation of cross-linguistic differences has never
been challenged. Second, the neat binary branching of Figure 1 is an artifact of
presentation. More specifically, it is an artifact of choosing some ‘big’ macroparame-
ters and a few languages, oversimplifying and ignoring many intermediate points of
variation. For example, some languages have both partial polysynthesis and null sub-
jects, which is a combination Figure 1 does not permit. This possibility cannot be cap-
tured without adding more parametric nodes in the hierarchy. Once these nodes are
added, Figure 1 will resemble the two analyzed networks. Overall, the obtained re-
sults confirm Chomsky’s early disclaimer about instantaneous acquisition. In his
words, the ‘instantaneous acquisition’ model “is surely false in detail, but can very
well be accepted as a reasonable first approximation” (Chomsky 1967: 441-442).

In relation to the computability concerns our analyses raise, a reviewer notes that the
formalization of the cross-parametric implications currently adopted in the networks
represented in Figures 2 and 6 is not assumed to reproduce or simulate any learning
process, and it is not based on any consideration concerning the potential computa-
tional effort made by the learner in processing this type of information. Thus, the
possibility cannot be excluded that a different formalization of the same implicational
network might produce different outputs that could also affect the settability relations
we used in our analyses. Although this is true, the parametric inventories we analyzed
are firmly grounded on solid descriptive, typological, and phylogenetic evidence
(Crisma et al. 2020, Ceolin et al. 2021). As such, determining their computability is
important. Naturally, if in future work the implicational network is altered specifi-
cally in order to be made computable/learnable, the observed computability concerns
will be circumvented. Based on current knowledge, however, the fact remains that
two examples of our best parametric inventories raise specific computability con-
cerns at their present state of development.

These concerns beg two important questions about the scope of our results. A re-
viewer asks what would go wrong if the learner ignores the implicational network and
just tries to opportunistically set parameters whenever possible. Relatedly, is it possi-
ble that our results do not raise computability concerns for P&P in general, but for
one particular instantiation of a P&P model that involves a predefined list of options
in the initial state of development? The answer to the first question is that the impli-
cational network provides innate shortcuts that aid acquisition. Asking whether the
learner could ignore it would be tantamount to asking whether we can ignore any
other innate aspect of our biological make-up. More importantly, however, the
learner has no reason to ignore it, because this implicational network is the glue that
keeps together the parametric space. If we remove the glue, the learner is left to nav-
igate an extremely large variation space without any shortcuts. This also answers the
second question. As mentioned already, our results do not speak about Universal
Grammar or the principles of P&P, hence it would be wrong to conclude that we cast
doubt on P&P as a whole. We examined a specific aspect of its parametric component.
In this context, the answer to the second question is that if we remove the implica-
tional network from the picture, the computability issues we raised may be indeed
sidestepped. However, this does not entail that we are left with a parametric model

 Language Development Research

Volume 2, Issue 1, 31 December 2022

127

that is free from computability concerns. In the absence of implicational relations,
the learner faces the task of navigating an extremely large space of variation. It has
been suggested that this large space of variation “brings to light a fatal weakness of
the microparametric approach” (Huang & Roberts 2016: 321): Even as few as a hun-
dred independent parameters would raise serious concerns about the realization of
only a very small fragment of the set of possible grammars during the entire human
history (Huang & Roberts 2016). In a nutshell, removing the implicational network
from the picture possibly alleviates the computability problems we raised, but makes
the model vulnerable to other issues. Of course, it is entirely possible that parametric
models that do not suffer from any type of computability issues are developed in the
future. At present, the most promising candidates are those that refer to emergent
parametric hierarchies (Huang & Roberts, 2016; Biberauer, 2019). Once these pro-
posals are developed in sufficient technical detail and mapped to cross-linguistic data,
future studies that assess their computability will be possible.

Having shown that the process of grammar development does not correspond to fix-
ing values of innate parameters, the question of how the child sets its target grammar
becomes again relevant. Merging insights from different acquisition models (Yang,
2002; Chistiansen et al. 2009; Boeckx & Leivada, 2014; Fasanella, 2014; Westergaard,
2014; Yang et al., 2017; Chomsky, 2019), Figure 7 presents a sequence of seven pro-
cesses that explain how the child extrapolates rules of grammar from the input. The
aim here is to provide a detailed, biologically plausible account for this task, while
assuming as few Universal Grammar-/language-specific primitives as possible. Fig-
ure 7 lists the tasks that the efficient learner has to perform in order to arrive at a
target grammar Gt.

We will briefly describe the principles of computation that aid the learner in each of
these tasks, as well as their neurobiological basis, effectively presenting the process
of acquiring a Gt without resorting to postulating parameters. Importantly, we illus-
trate this model not to outline its specific algorithmic architecture, which deviates
from the central critique and motivation we adopt here. Instead, we provide a general
outline of an architecture that could feasibly be instantiated in a number of ways.

One crucial factor that unlocks the process of developing a Gt is very early prosodic
information which helps eliminate logically possible (though unsubstantiated on the
basis of the input) learning tracks. Therefore, the first step in the process of cracking
the grammar ‘code’ is input segmentation, whereby the learner breaks a continuous
acoustic or visuo-motor signal into a sequence of discrete, meaningless symbols that
make up larger meaningful chunks. In order to go from continuous, unsegmented
input to discrete elements, the learner must treat the input as meaningful across lev-
els of linguistic analysis (Process 1 in Figure 7).

 Language Development Research

Volume 2, Issue 1, 31 December 2022

128

Figure 7. Processes and cognitive cues that are critical in developing a target gram-
mar from the input.

One crucial factor that unlocks the process of developing a Gt is very early prosodic
information which helps eliminate logically possible (though unsubstantiated on the
basis of the input) learning tracks. Therefore, the first step in the process of cracking
the grammar ‘code’ is input segmentation, whereby the learner breaks a continuous
acoustic or visuo-motor signal into a sequence of discrete, meaningless symbols that
make up larger meaningful chunks. In order to go from continuous, unsegmented
input to discrete elements, the learner must treat the input as meaningful across lev-
els of linguistic analysis (Process 1 in Figure 7). More concretely, the computation
progresses from forming statistical observations over phoneme distribution to deci-
phering word edges, segmenting morphemes, and then determining lexical catego-
ries (Christiansen et al., 2009). For spoken languages, the key to this process is the
entrainment of the auditory cortex to different aspects of handling the acoustic signal,
such as parsing at the syllabic level and integrating various cues while filtering back-
ground noise (Ding & Simon, 2014; Benítez-Burraco & Murphy, 2019; Murphy, 2015,
2020). For sign languages, cortical entrainment to the sign envelope is strongest at

 Language Development Research

Volume 2, Issue 1, 31 December 2022

129

occipital and parietal regions (Brookshire et al., 2017). After such initial entrainment,
endogenous neural activity appears to “take over” and generate inferences about ab-
stract structure, which we assume is the point at which grammatically relevant hy-
potheses can be made. This modality-independent stimulus-brain coherence under-
lies the extraction of probabilistic information from the input. Crucially, these pro-
cesses presuppose a capacity to generate specific lexical categories but also a capacity
to represent particular syntactic features that enter into structure-building opera-
tions; representations that seem unlike any other symbolic units in the primate world.
In carrying out this process, the learner is initially guided by the Unambiguous Data
Constraint, which leads them to select and focus on the simplest and cleanest possible
data, mainly unambiguous matrix clauses (i.e., Process 2 in Figure 7; Lightfoot, 1991,
2020; Fodor, 1998; Pearl & Weinberg, 2007). This constraint can be viewed as the out-
come of two hallmark tendencies of neural organization: the tendency to chunk long
sequences and the tendency to organize/compress input in simple ways (Fonollosa et
al., 2015; Christiansen & Chater, 2016; Chater & Loewenstein, 2016; Al Roumi et al.,
2021). These tendencies are ubiquitous, but differentially manifested in accordance
with the individual characteristics of spoken and signed phonology (e.g., single-seg-
ment words are rare in spoken languages, but common in sign languages, due to the
different chunking strategies involved; Brentari, 1998; Emmorey, 2016). Having se-
lected the relevant input, the learner then analyzes it by hypothesizing rules, based
on saliently accessible morphophonological cues (Process 3; Boeckx & Leivada, 2014;
Fasanella, 2014). According to the Accessibility Condition, grammatical properties of
the Gt are determined by directly inspecting phonological and morphological prop-
erties of utterances (Fasanella, 2014). The speaker/signer analyzes an input chunk
through hypothesizing a grammar Gi with a probability pi. Depending on whether Gi
matches the input from Gt, Gi is punished or rewarded by decreasing and increasing
pi accordingly (Yang, 2002).

Progressively, the learner tackles more complex input, but does so by avoiding over-
generalizations (Process 4). The Subset Principle guides the learner to generalize as
conservatively as possible (Yang et al., 2017). Concerns that have been raised about
the computational complexity of the Subset Principle (see Yang, 2016) can be side-
stepped through the postulation of emergent (i.e., not innate) micro-cues. As minimal
points of syntactic representation, micro-cues anchor the formed hypotheses in nar-
row domains of application, always on the basis of positive evidence (Westergaard,
2014). This anchoring renders wholesale, computationally costly comparisons of Gi
and Gt unnecessary; a notion in line with recent developments in derivational syntac-
tic theory (Chomsky, 2019; Murphy & Shim, 2020). Indeed, one of the implications of
our results is that the initial hypothesizing on the part of the child of a large number
of conflicting grammars is purely a stipulation from traditional psycholinguistic mod-
els, with no grounding in computability concerns. In a similar way that models of
syntax no longer typically assume that multiple independent derivational represen-
tations of a specific tree are compared during sentence construction (as in early min-
imalist syntax), so too should language acquisition researchers push computational
feasibility (and not competition between Gi and Gt) as a primary constraint on model-
ling.

 Language Development Research

Volume 2, Issue 1, 31 December 2022

130

Certain generalization tendencies do come into play (e.g., the Input Generalization, a
computational bias that suggests that there is a preference for a property of a syntactic
head to generalize to other heads, thus giving rise to harmonic patterns; Huang &
Roberts, 2016), but they boil down to soft biases that do not translate into extensive
overgeneralizations in child language. Their status as soft biases is also evidenced by
the fact that they do not translate to absolute typological universals: Phylogenetic
modelling has demonstrated that these generalizations are not uniform across lan-
guage families (Dunn et al., 2011). Research into recently emerged sign languages cor-
roborates this conclusion. There is some evidence for harmonic headedness patterns
in the repertoire of first-generation signers of Al-Sayyid Bedouin Sign Language, but
variation exists and the preference for one syntactic order over others becomes more
stable progressively over different generations of signers (Sander et al., 2005).

Once the learner has hypothesized rules, a cognitive principle that minimizes the do-
main of application of these rules comes into the picture (Process 5). Similar to how
the Subset Principle constrains generalizing across different morphosyntactic envi-
ronments, the Cyclic Principle constrains the domain of application of the hypothe-
sized rules. According to this principle, when one domain to which a rule can apply
is contained in another, the rule applies first to the smaller domain and then proceeds
to the wider one (Chomsky, 2019). From a biological perspective, this stepwise cyclical
application of rules in grammar is concordant with the overall cyclical nature of au-
ditory and visual perception, which has been linked to dynamic oscillatory activity in
the brain (Ho et al., 2017). In addition, these notions seem amenable to ultimately be-
ing embedded within a framework of mature syntactic computation that calls upon
demands of workspace construction; general resource restrictions on recursive, Mar-
kovian computations; limiting access to representational search; and related notions
(Chomsky, 2019).

A key component of many acquisition models concerns the process that enables the
learner to decide the productivity of a hypothesized rule in light of possible excep-
tions. The learner must perform some calculation that compares a list of candidates
over which a rule applies and a list of exceptions to the rule (Process 6). The Tolerance
Principle provides a calculus of the exceptions a learner can tolerate before abandon-
ing a hypothesized rule as unproductive: Assume a rule R is productive over a set of
items N only when the number of known exceptions e is smaller than the number of
N divided by the natural log of N (Yang, 2002; Yang et al., 2017). The Tolerance Prin-
ciple can also be shown to resolve the acquisition of English dative constructions, a
perennial problem in acquisition research (Yang, 2017).

Last, the learner must be able to decide between different productive rules that may
apply to the same item (Process 7). The Blocking Principle states that when two rules
are available to realize a set of morphophonological values, the more specific one ap-
plies (Yang 2002). This ability to inactivate general rules in specific cases (e.g., not
apply the regular rule for past tense formation in irregular verbs) provides the list of

 Language Development Research

Volume 2, Issue 1, 31 December 2022

131

exceptions that are necessary in the learner’s effort to calculate the productivity of a
hypothesized rule.

Overall, the list of processes in Figure 7 consists of some landmark cognitive princi-
ples that are operative in the process of language growth in the individual. Crucially,
it shifts the focus of research to principles of computation, rather than triggered rep-
resentational primitives. In addition, we have tried to emphasize the limitations on
assuming models of idealized observers that choose either optimal or near-optimal
hypotheses from an enormous list of explicitly entertained candidate settings. The
model does not cover all aspects of acquisition; instead, it has an explicit focus on
grammar, leaving other domains (e.g., the lexicon, pragmatics) unaddressed. Its
scope is narrowed since our aim has explicitly been to account specifically for the
process of cracking the grammar code without assuming innate parameters, in light
of the computability problems presented above. Importantly, the program that per-
formed the computations presented does not ‘read’ the linguistic properties behind
the analyzed parameters; it only computes the various permutations between the set-
tability paths behind them. As such, both the program that was used in the analysis
of settability relations and the synthesis of cognitive principles that come into play in
language acquisition can be embedded in wider contexts (e.g., by using the program
to compute settability relations in other parametric models or by expanding the
model in Figure 7 to include principles that are relevant in the process of lexical learn-
ing), eventually piecing together a more complete and biologically plausible account
of the language acquisition process. At a minimum, our framework provides a (puta-
tively) computationally tractable, and (seemingly) psychologically plausible scaffold
around which implementational models can be built. We consider the account briefly
outlined here to be ripe for future modelling research, in particular with respect to
how the notion of computational tractability might map onto the development of gen-
eral learning biases and computational principles of efficiency. Future research could
expand on the list of parameters we have used and make more direct contact with
models of cognitive and neural development (Crisma et al., 2020; Ceolin et al., 2020;
2021).

References

Al Roumi, F., Marti, S., Wang, L., Amalric, M., & Dehaene, S. (2021). Mental com-
pression of spatial sequences in human working memory using numerical and geo-
metrical primitives. Neuron, 109(16), 2627–2639. doi: https://doi.org/10.1016/j.neu-
ron.2021.06.009

Baker, M. (2003). Linguistic differences and language design. Trends in Cognitive Sci-
ences, 7, 349–353. doi: 10.1016/s1364-6613(03)00157-8

Benítez-Burraco, A., & Murphy, E. (2019). Why brain oscillations are improving our
understanding of language. Frontiers in Behavioral Neuroscience, 13, 190. doi:
doi.org/10.3389/fnbeh.2019.00190

 Language Development Research

Volume 2, Issue 1, 31 December 2022

132

Biberauer, T. (2019). Factors 2 and 3: Towards a principled approach. Catalan Jour-
nal of Linguistics, Special Issue, 45–88. doi: doi.org/10.5565/rev/catjl.219

Boeckx, C., & Leivada, E. (2014). On the particulars of Universal Grammar: Implica-
tions for acquisition. Language Sciences, 46(B), 189–198. doi: doi.org/10.1016/j.lang-
sci.2014.03.004

Boeckx, C., & Leivada, E. (2013). Entangled parametric hierarchies: Problems for an
overspecified Universal Grammar. PLoS ONE, 8(9), e72357. doi: doi.org/10.1371/jour-
nal.pone.0072357

Brentari, D. (1998). A prosodic model of sign language phonology. Cambridge, MA: MIT
Press.

Brookshire, G., Lu, J., Nusbaum, H. C., Goldin-Meadow, S., & Casasanto, D. (2017).
Visual cortex entrains to sign language. PNAS, 114(24), 6352–6357. doi:
10.1073/pnas.1620350114

Ceolin, A., Guardiano, C., Irimia, M.-A., & Longobardi, G. (2020). Formal syntax and
deep history. Frontiers in Psychology, 11, 488871. doi:
https://doi.org/10.3389/fpsyg.2020.488871

Ceolin, A., Guardiano, C., Longobardi, G., Irimia, M. A., Bortolussi L., & Sgarro A.
(2021). At the boundaries of syntactic prehistory. Philosophical Transactions of the
Royal Society B, 376, 20200197. doi: https://doi.org/10.1098/rstb.2020.0197

Chater, N., & Loewenstein, G. (2016). The under-appreciated drive for sense-mak-
ing. Journal of Economic Behavior & Organization, 126(B), 137–154. doi:
https://doi.org/10.1016/j.jebo.2015.10.016

Chomsky, N. (1965). Aspects of the theory of syntax. Cambridge, MA: MIT Press.

Chomsky, N. (1967). The formal nature of language. Appendix to E. Lenneberg’s Bio-
logical foundations of language. New York: John Wiley and Sons.

Chomsky, N. (1975). Reflections on language. New York: Pantheon.

Chomsky, N. (1980). Rules and representations. New York: Columbia University Press.

Chomsky, N. (1981). Lectures on Government and Binding. Dordrecht: Foris.

Chomsky, N. (2019). Some puzzling foundational issues: The Reading program. Cata-
lan Journal of Linguistics, Special Issue, 263–285. doi: doi.org/10.5565/rev/catjl.287

Christiansen, M. H., & Chater, N. (2016). The Now-or-Never bottleneck: A funda-
mental constraint on language. Behavioral and Brain Sciences, 39, e62. doi:

 Language Development Research

Volume 2, Issue 1, 31 December 2022

133

doi.org/10.1017/S0140525X1500031X

Christiansen, M. H., Onnis, L., & Hockema, S. A. (2009). The secret is in the sound:
From unsegmented speech to lexical categories. Developmental Science, 12(3), 388–
395. doi: doi.org/10.1111/j.1467-7687.2009.00824.x

Cinque, G. (1989). Parameter setting in “instantaneous” and real-time acquisition.
Behavioral and Brain Sciences, 12, 336.

Cowan, N. (2000). The magical number 4 in short-term memory: A reconsideration
of mental storage capacity. Behavioral and Brain Sciences, 24, 87–114. doi:
https://doi.org/10.1017/S0140525X01003922

Crisma, P., Guardiano, C., & Longobardi, G. (2020). Syntactic parameters and lan-
guage learnability. Studi Saggi Linguistici, 58, 99–130. doi:
https://doi.org/10.4454/ssl.v58i2.265

Ding N., & Simon J. Z. (2014). Cortical entrainment to continuous speech: functional
roles and interpretations. Frontiers in Human Neuroscience, 8, 311. doi:
doi.org/10.3389/fnhum.2014.00311

Dunn, M., Greenhill, S. J., Levinson, S. C., & Gray R. D. (2011). Evolved structure of
language shows lineage-specific trends in word-order universals. Nature, 473, 79–82.
doi: 10.1038/nature09923

Emmorey, K. (2016). Consequences of the Now-or-Never bottleneck for signed ver-
sus spoken languages. Behavioral and Brain Sciences, 39, e70. doi:
https://doi.org/10.1017/S0140525X1500076X

Fasanella, A. (2014). On how learning mechanisms shape natural languages. Doctoral
Dissertation, Universitat Autònoma de Barcelona.

Fitch, W. T., & Friederici, A. (2012). Artificial grammar learning meets formal lan-
guage theory: an overview. Philosophical Transactions of the Royal Society B, 367,
1933–1955. doi: https://doi.org/10.1098/rstb.2012.0103

Fodor, J. D. (1998). Unambiguous triggers. Linguistic Inquiry, 29, 1–36. doi:
10.1162/002438998553644

Fodor, J. D. (2009). Syntax acquisition: an evaluation measure after all? In M. Piat-
telli-Palmarini, P. Salaburu, & J. Uriagereka (Eds.), Of minds and language: A dialogue
with Noam Chomsky in the Basque Country (pp. 44–57). Oxford: Oxford University
Press.

Fodor, J. D., & Sakas, W. G. (2005). The Subset Principle in syntax: costs of compli-
ance. Journal of Linguistics, 41, 513–569. doi:

 Language Development Research

Volume 2, Issue 1, 31 December 2022

134

Fonollosa, J., Neftci, E., & Rabinovich, M. (2015). Learning of chunking sequences in
cognition and behavior. PLOS Computational Biology, 11(11), e1004592. doi:
https://doi.org/10.1371/journal.pcbi.1004592

Gallistel, C. R., & King, A. P. (2009). Memory and the computational brain. Malden:
Wiley-Blackwell.

Gibson, T., & Wexler, K. (1994). Triggers. Linguistic Inquiry, 25(3), 407–454.

Ho, H. T., Leung, J., Burr, D. C., Alais, D., & Morrone, M. C. (2017). Auditory sensi-
tivity and decision criteria oscillate at different frequencies separately for the two
ears. Current Biology, 27, 3643–3649. doi: https://doi.org/10.1016/j.cub.2017.10.017

Huang, C. T. J., & Roberts, I. (2016). Principles and parameters of Universal Gram-
mar. In I. Roberts (Ed.), The Oxford handbook of Universal Grammar (pp. 306–354). Ox-
ford: Oxford University Press.

Kazakov, D. L., Cordoni, G., Algahtani, E., Ceolin, A., Irimia, M-A., Kim, S-S., Miche-
lioudakis, D., Radkevich, N., Guardiano, C., & Longobardi, G. Learning implica-
tional models of universal grammar parameters. (2018). In C. Cuskley, M. Flaherty,
H. Little, L. McCrohon, A. Ravignani, & T. Verhoef (Eds.), The evolution of language:
Proceedings of the 12th International Conference (EVOLANG XII). Online at http://evo-
lang.org/torun/proceedings/papertemplate.html?p=176.

Levelt, W. J. M. (1974). Formal grammars in linguistics and psycholinguistics. The
Hague: Mouton.

Lightfoot, D. (1991). How to set parameters. Cambridge, MA: MIT Press.

Lightfoot, D. (2020). Born to parse: How children select their language. Cambridge, MA:
MIT Press.

Longobardi, G., & Guardiano, C. (2009). Evidence for syntax as a signal of historical
relatedness. Lingua, 119, 1679–1706. doi: https://doi.org/10.1016/j.lingua.2008.09.012

Manzini, M. R. (2019). Parameters and the design of the Language Faculty. Northern
Italian partial null subjects. Evolutionary Linguistic Theory, 1(1), 24–56. doi:
https://doi.org/10.1075/elt.00003.man

Marcus, G., & Davis, E. (2021). Insights for AI from the human mind. Communica-
tions of the ACM, 64(1), 38–41. doi: 10.1145/3392663

Murphy, E. (2015). The brain dynamics of linguistic computation. Frontiers in Psy-
chology, 6, 1515. doi: 10.3389/fpsyg.2015.01515

 Language Development Research

Volume 2, Issue 1, 31 December 2022

135

Murphy, E. (2017). Acquiring the impossible: developmental stages of copredication.
Frontiers in Psychology, 8, 1072. doi: 10.3389/fpsyg.2017.01072

Murphy, E. (2020). The oscillatory nature of language. Cambridge: Cambridge Univer-
sity Press.

Murphy, E., & Shim, J.-Y. (2020). Copy invisibility and (non-)categorial labeling. Lin-
guistic Research, 37(2), 187–215. doi: 10.17250/khisli.37.2.202006.002

Niyogi, P., & Berwick, R. C. (1996). A language learning model for finite parameter
spaces. Cognition, 61(1–2), 161–193. doi: 10.1016/s0010-0277(96)00718-4

Niyogi, P., & Berwick, R. C. (1997). Evolutionary consequences of language learning.
Linguistics and Philosophy, 20, 697–719. doi: https://doi.org/10.1023/A:1005319718167

Page, K. M. (2004). Language learning: how much evidence does a child need in or-
der to learn to speak grammatically? Bulletin of Mathematical Biology, 66, 651–662.
doi: 10.1016/j.bulm.2003.09.007

Pearl, L., & Lidz, J. (2013). Parameters in language acquisition. In C. Boeckx & K. K.
Grohmann (Eds.), The Cambridge handbook of biolinguistics (pp. 129–159). Cambridge:
Cambridge University Press.

Pearl, L., & Weinberg, A. (2007). Input filtering in syntactic acquisition: answers
from language change modeling. Language Learning and Development, 3(1), 43–72.
doi: 10.1080/15475440709337000

Rizzi, L. (2000). Comparative syntax and language acquisition. London: Routledge.

Sakas, G. W. (2000). Modeling the effect of cross-language ambiguity on human syn-
tax acquisition. Proceedings of the fourth Conference on Computational Natural Lan-
guage Learning and the Second Learning Language in Logic Workshop, 61–66.

Sakas, G. W., Yang, C., & Berwick, R. C. 2017. Parameter setting is feasible. Linguistic
Analysis, 41, 391–408.

Sandler, W., Meir, I., Padden, C., & Aronoff, M. (2005). The emergence of grammar:
Systematic study in a new language. PNAS, 102, 2661–2665. doi:
https://doi.org/10.1073/pnas.0405448102

Villmoare, B. et al. (2015). Early Homo at 2.8 Ma from Ledi-Geraru, Afar, Ethiopia.
Science, 347, 1352–1355. doi: 10.1126/science.aaa1343

Westergaard, M. (2014). Linguistic variation and micro-cues in first language acqui-
sition. Linguistic Variation, 14(1), 26–45. doi: https://doi.org/10.1075/lv.14.1.02wes

 Language Development Research

Volume 2, Issue 1, 31 December 2022

136

Yang, C. (2002). Knowledge and learning in natural language. Oxford: Oxford Univer-
sity Press.

Yang, C. (2016). The price of linguistic productivity. How children learn to break the rules
of language. Cambridge, MA: MIT Press.

Yang, C. (2017). Rage against the machine: evaluation metrics in the 21st century.
Language Acquisition: A Journal of Developmental Linguistics, 24(2), 100–125. doi:
doi.org/10.1080/10489223.2016.1274318

Yang, C., Crain, S., Berwick R. C., Chomsky, N., & Bolhuis, J. J. (2017). The growth of
language: Universal Grammar, experience, and principles of computation. Neurosci-
ence and Biobehavioral Reviews, 81, 103–119. doi: https://doi.org/10.1016/j.neubio-
rev.2016.12.023

Data, code and materials availability statement

The code is provided in the Appendix.

Authorship and Contributorship Statement

EL was involved in conceptualization of the research, data analysis, and data curation,
and wrote the first draft of the manuscript. EM was involved in writing and editing
the draft manuscript. All authors approved the final version of the manuscript and
agree to be accountable for all aspects of the work in ensuring that questions related
to the accuracy or integrity of any part of the work are appropriately investigated and
resolved.

Acknowledgements

We thank the editor Brian MacWhinney and three anonymous reviewers for the use-
ful feedback they provided. We are also grateful to Cristina Guardiano who answered
questions about the analyzed pools of data, and to Cordian Riener for checking the
mathematical aspects of the computation. This work received support from the Euro-
pean Union’s Horizon 2020 research and innovation programme under the Marie
Skłodowska-Curie grant agreement n° 746652 and from the Spanish Ministry of Sci-
ence, Innovation and Universities under the Ramón y Cajal grant agreement n°
RYC2018-025456-I (to EL). The funders had no role in the writing of the study and in
the decision to submit the article for publication.

 Language Development Research

Volume 2, Issue 1, 31 December 2022

137

Appendixes

import math

def computablePaths(paths):

 return math.factorial(paths)

def notComputablePaths(paths):

 if paths in [0, 1, 2]:

 return 0

 else:

 notCompPath = 0

 for l in range(2, paths + 1):

 temp = 1

 for t in range(0, l - 1):

 temp = temp * (paths - t)

 notCompPath = notCompPath + temp * (l - 2)

 return notCompPath

def calculateProbability(compPaths,notCompPaths, paths):

 totalPaths = compPaths + notCompPaths

 probability = float(compPaths / totalPaths)

 print(f"The probability of a successful computation is {probability * 100}%");

def main():

 finish = 1

 while(finish != 2):

 Language Development Research

Volume 2, Issue 1, 31 December 2022

138

 print("-" * 50);

 print("-" * 50 + "\n");

 paths = int(input("Number of paths: "))

 compPaths = computablePaths(paths)

 notCompPaths = notComputablePaths(paths)

 print(f"For {paths} paths, there are:\nWays of successful computation: {comp-
Paths}\nWays of unsuccessful computation: {notCompPaths} \n")

 calculateProbability(compPaths, notCompPaths, paths);

 finish = int(input("\nDo you want to calculate another probability? \n1.Yes
2.No\n\n"))

 print("\n");

if __name__ == "__main__":

 main()

License

Language Development Research (ISSN 2771-7976) is published by TalkBank and the Car-
negie Mellon University Library Publishing Service. Copyright © 2022 The Author(s).
This work is distributed under the terms of the Creative Commons Attribution-Non-
commercial 4.0 International license (https://creativecommons.org/licenses/by-
nc/4.0/), which permits any use, reproduction and distribution of the work for non-
commercial purposes without further permission provided the original work is at-
tributed as specified under the terms available via the above link to the Creative Com-
mons website.

